Câu hỏi:

20/10/2025 44 Lưu

Cho đường thẳng \(d\) song song với mặt phẳng \((P).\) Mệnh đề nào sau đây đúng?

A. Đường thẳng \(d\) không có điểm chung với mặt phẳng \((P).\)                      
B. Đường thẳng \(d\) có đúng một điểm chung với mặt phẳng \((P).\)    
C. Đường thẳng \(d\) có đúng hai điểm chung với mặt phẳng \((P).\)                   
D. Đường thẳng \(d\) có vô số điểm chung với mặt phẳng \((P).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Dựa vào định nghĩa, đường thẳng \(d\) song song với mặt phẳng \((P)\) khi đó đường thẳng \(d\) không có điểm chung với mặt phẳng \((P).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 0,5

Trong mặt phẳng \(\left( {SAC (ảnh 1)

Trong mặt phẳng \(\left( {SAC} \right)\), gọi \(K = AM \cap SO\).

Khi đó \(\left( {SBD} \right) \cap \left( {ABM} \right) = BK\).

Trong \(\left( {SBD} \right)\) lấy điểm \(N = BK \cap SD\). Khi đó \(N = SD \cap \left( {ABM} \right)\).

\(ABCD\) là hình vuông cạnh bằng \(a\) nên \(AC = BD = a\sqrt 2 \).

Do đó \(\Delta SAC\)\(\Delta SBD\) là các tam giác đều.

\(K = AM \cap SO \Rightarrow K\) là trọng tâm \(\Delta SAC\).

Suy ra \(K\) là trọng tâm \(\Delta SBD\) \( \Rightarrow BN\) là trung tuyến của \(\Delta SBD\) \( \Rightarrow N\) là trung điểm của \(SD\).

Suy ra \(\frac{{SN}}{{SD}} = \frac{1}{2} = 0,5\).

Lời giải

Cho hình chóp \(S.ABCD\) có đáy là hình (ảnh 1)

Trả lời: 1

Để \(MN//\left( {SAD} \right)\) thì \(MN//AK\) (\(K = BN \cap AD\)).

\(MN//SK\) nên \(\frac{{BM}}{{MS}} = \frac{{BN}}{{NK}}\) (1).

\(AK//BC\) nên \(\frac{{BN}}{{NK}} = \frac{{CN}}{{AN}}\) (2).

Từ (1) và (2), ta có \(\frac{{BM}}{{MS}} = \frac{{CN}}{{AN}}\) hay \(x = y\). Suy ra \(\frac{x}{y} = 1\).