Câu hỏi:

19/10/2025 96 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành và \(O\) là giao điểm của hai đường chéo của hình bình hành \(ABCD\). Gọi \(M,N\) lần lượt là trung điểm của \(SA,SD\). Khi đó:

a) Điểm \(O\) là điểm chung của \(\left( {OMN} \right)\)\(\left( {ABCD} \right)\).

b) \(MN//BC\).

c) \(OM//\left( {SBC} \right)\).

d) Giao tuyến của \(\left( {OMN} \right)\)\(\left( {SBC} \right)\) là đường thẳng d song song với hai đường thẳng \(MN\)\(BC\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) Đ, c) Đ, d) S

Cho hình chóp \(S.ABCD\) có đáy \( (ảnh 1)

a) Vì \(\left. \begin{array}{l}O \in \left( {OMN} \right)\\O = AC \cap BD\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}O \in \left( {OMN} \right)\\O \in \left( {ABCD} \right)\end{array} \right. \Rightarrow O \in \left( {OMN} \right) \cap \left( {ABCD} \right)\).

b) Vì \(M,N\) lần lượt là trung điểm của \(SA\)\(SD\) nên \(MN//AD\).

\(ABCD\) là hình bình hành nên \(AD//BC\).

Vậy \(\left\{ \begin{array}{l}MN//AD\\AD//BC\end{array} \right. \Rightarrow MN//BC\).

c) Vì \(M,O\) lần lượt là trung điểm của \(SA\)\(AC\) nên \(MO//SC\).

Vậy \(\left\{ \begin{array}{l}OM//SC\\SC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow OM//\left( {SBC} \right)\).

d) Vì \(\left\{ \begin{array}{l}MN//BC\\BC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow MN//\left( {SBC} \right)\).

Vậy \(\left\{ \begin{array}{l}MN//\left( {SBC} \right)\\OM//\left( {SBC} \right)\\MN \cap OM = M\\MN,OM \subset \left( {OMN} \right)\end{array} \right. \Rightarrow \left( {OMN} \right)//\left( {SBC} \right)\).

Do đó hai mặt phẳng \(\left( {OMN} \right)\)\(\left( {SBC} \right)\) không có đường thẳng giao tuyến.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({\rm{D}} = \mathbb{R}.\)              
B. \[{\rm{D}} = \mathbb{R}\backslash \left\{ 0 \right\}.\]    
C. \({\rm{D}} = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}.\)                              
D. \[{\rm{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}.\]

Lời giải

Đáp án đúng là: C

Hàm số xác định khi và chỉ khi \(\sin x \ne 0 \Leftrightarrow x \ne k\pi ,{\rm{ }}k \in \mathbb{Z}.\)

Vật tập xác định \({\rm{D}} = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}.\)

Lời giải

Trả lời: 9

Vị trí cân bằng của vật dạo động điều hòa là vị trí vật đứng yên, khi đó \(x = 0\), ta có

\(2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\( \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\[ \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\]\[ \Leftrightarrow t = \frac{{2\pi }}{{15}} + k\frac{\pi }{5},k \in \mathbb{Z}\].

Trong khoảng thời gian từ 0 đến 6 giây, tức là \(0 \le t \le 6\) hay

\[0 \le \frac{{2\pi }}{{15}} + k\frac{\pi }{5} \le 6\]\[ \Leftrightarrow - \frac{2}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\].

\(k \in \mathbb{Z}\) nên \(k \in \left\{ {0;1;2;3;4;5;6;7;8} \right\}\).

Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cần bằng 9 lần.

Câu 4

A. \({u_4} = \frac{1}{4}\).                      
B. \({u_5} = \frac{1}{{16}}\).          
C. \({u_5} = \frac{1}{{32}}\).          
D. \({u_3} = \frac{1}{8}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP