Câu hỏi:

19/10/2025 22 Lưu

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành \(ABCD\), \(O\) là giao điểm của \(AC\)\(BD\). Tam giác \(SCD\) là tam giác đều cạnh 2. Mặt phẳng \(\left( P \right)\) đi qua \(O\) và song song với mặt phẳng \(\left( {SCD} \right)\). Tính diện tích hình tạo bởi mặt phẳng \(\left( P \right)\) và các mặt của hình chóp \(S.ABCD\) (làm tròn đến hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 1,3

Cho hình chóp \(S.ABCD\) có đáy là hình bình hà (ảnh 1)

Do mặt phẳng \(\left( P \right)//\left( {SCD} \right)\)\(\left( {ABCD} \right) \cap \left( {SCD} \right) = CD\)\( \Rightarrow \left( {ABCD} \right) \cap \left( P \right) = MN\) đi qua \(O\) và song song với \(CD\) (với \(M \in AD,N \in BC\)).

Tương tự ta có: \(\left( {SAD} \right) \cap \left( P \right) = MF//SD\) (với \(F \in SA\)); \(\left( {SBC} \right) \cap \left( P \right) = NE//SC\) (với \(E \in SB\)).

Vậy hình tạo bởi mặt phẳng \(\left( P \right)\) và các mặt của hình chóp \(S.ABCD\) là tứ giác \(MNEF\).

Ta có \(MN\) đi qua \(O\) và song song với \(CD\) nên \(M,N\) lần lượt là trung điểm của \(AD,BC\).

Suy ra \(E,F\) lần lượt là trung điểm \(SB,SA\).

Gọi \(I,K\) lần lượt là trung điểm \(SC,SD\). Khi đó ta có:

\(IK//EF;IK = EF;IC//EN;IC = EN;\)\(KD//FM,KD = FN;MN//CD;MN = CD\).

Do đó \({S_{MNEF}} = {S_{DCIK}} = \frac{3}{4}{S_{SCD}} = \frac{3}{4}.\frac{{\sqrt 3 }}{4}{.2^2} = \frac{{3\sqrt 3 }}{4} \approx 1,3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({\rm{D}} = \mathbb{R}.\)              
B. \[{\rm{D}} = \mathbb{R}\backslash \left\{ 0 \right\}.\]    
C. \({\rm{D}} = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}.\)                              
D. \[{\rm{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}.\]

Lời giải

Đáp án đúng là: C

Hàm số xác định khi và chỉ khi \(\sin x \ne 0 \Leftrightarrow x \ne k\pi ,{\rm{ }}k \in \mathbb{Z}.\)

Vật tập xác định \({\rm{D}} = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}.\)

Lời giải

Trả lời: 6,63

Cho hình tứ diện đều \(ABCD\) c (ảnh 1)

Trong mặt phẳng \(\left( {DMC} \right)\), gọi \(I\) là giao điểm của \(MN\)\(DP\).

Khi đó \(I \in MN \subset \left( {ABN} \right) \Rightarrow I \in \left( {ABN} \right)\).

Vậy \(I\) là giao điểm của \(DP\)\(\left( {ABN} \right)\).

Tam giác \(DMC\)\(MN\)\(DP\) là hai đường trung tuyến nên giao điểm \(I\) là trọng tâm \(\Delta DMC.\)

Tam giác \(ABD\) đều cạnh bằng 12 và có \(DM\) là đường cao nên \(DM = 12.\frac{{\sqrt 3 }}{2} = 6\sqrt 3 \).

Tương tự ta có \(CM = 6\sqrt 3 \).

Do đó tam giác \(DMC\) cân tại \(M\). Suy ra \(MN\) cũng là đường cao của tam giác \(DMC\) hay \(MN \bot CD\).

Ta có \(DM = 6\sqrt 3 ,DN = \frac{1}{2}DC = 6\) nên \(MN = \sqrt {D{M^2} - D{N^2}} = 6\sqrt 2 \).

Khi đó \(IN = \frac{1}{3}MN = 2\sqrt 2 .\)

Tam giác \(DNI\) vuông tại \(N\) nên \(DI = \sqrt {D{N^2} + I{N^2}} = 2\sqrt {11} \).

Vậy \(I\) cách điểm \(D\) một khoảng bằng \(2\sqrt {11} \approx 6,63\).

Câu 3

A. Chéo nhau.         
B. Đồng quy.           
C. Thẳng hàng.                            
D. Song song.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({u_4} = \frac{1}{4}\).                      
B. \({u_5} = \frac{1}{{16}}\).          
C. \({u_5} = \frac{1}{{32}}\).          
D. \({u_3} = \frac{1}{8}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP