Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
\(\left( {1; + \infty } \right)\).
\(\left( {0;1} \right)\).
\(\left( { - 1;0} \right)\).
\(\left( {0; + \infty } \right)\).
Quảng cáo
Trả lời:

Dựa vàobảng biến thiên hàm số nghịch biến trên khoảng \(\left( {0;1} \right)\). Chọn B.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \({\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)^2} = {\overrightarrow {AB} ^2} + {\overrightarrow {AC} ^2} + {\overrightarrow {AD} ^2} + 2.\overrightarrow {AB} .\overrightarrow {AC} + 2.\overrightarrow {AC} .\overrightarrow {AD} + 2\overrightarrow {AB} .\overrightarrow {AD} \)
\( = {\overrightarrow {AB} ^2} + {\overrightarrow {AC} ^2} + {\overrightarrow {AD} ^2} + 2.\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) + 2.\left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {AD} } \right|.\cos \left( {\overrightarrow {AC} ,\overrightarrow {AD} } \right) + 2\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AD} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right)\)
\( = {12^2} + {12^2} + {12^2} + 2.12.12.\cos 60^\circ + 2.12.12.\cos 60^\circ + 2.12.12.\cos 60^\circ \)\( = 864\).
Suy ra \(\left| {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right| = 12\sqrt 6 \). Do đó \(a = 12\).
Trả lời: \(12\).
Lời giải
Gắn hệ trục \(Oxyz\) như hình vẽ.
Ta có \(A\left( {0;0;0} \right),A'\left( {0;0;3,2} \right),M\left( {4;4;1,6} \right),D'\left( {0;4;3,2} \right),I\left( {2;0;1,6} \right)\) .
Gọi \(E\left( {x;y;z} \right),F\left( {m;n;p} \right)\) .
Giả sử \(\overrightarrow {AE} = a\overrightarrow {AM} \)\( \Leftrightarrow \left\{ \begin{array}{l}x = 4a\\y = 4a\\z = 1,6a\end{array} \right. \Rightarrow E\left( {4a;4a;1,6a} \right)\) .
\(\overrightarrow {D'F} = b\overrightarrow {D'I} \)\( \Leftrightarrow \left\{ \begin{array}{l}m = 2b\\n - 4 = - 4b\\p - 3,2 = - 1,6b\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m = 2b\\n = 4 - 4b\\p = 3,2 - 1,6b\end{array} \right.\)\( \Rightarrow F\left( {2b;4 - 4b;3,2 - 1,6b} \right)\) .
Ta có \(\overrightarrow {EF} = \left( {2b - 4a;4 - 4b - 4a;3,2 - 1,6b - 1,6a} \right)\) , \(\overrightarrow {AA'} = \left( {0;0;3,2} \right)\) .
Đường thẳng đi qua hai con nhện vuông góc với trần nhà thì \(\overrightarrow {EF} \) cùng phương với \(\overrightarrow {AA'} \) nên
\(\left\{ \begin{array}{l}2b - 4a = 0\\4 - 4b - 4a = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{3}\\b = \frac{2}{3}\end{array} \right.\) . Khi đó \(\overrightarrow {EF} = \left( {0;0;1,6} \right) \Rightarrow EF = 1,6\) .
Vậy khoảng cách giữa hai con nhện bằng 1,6 m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.