Câu hỏi:

19/10/2025 91 Lưu

Đường cong trong hình là đồ thị của hàm số nào dưới đây?

Đường cong trong hình là đồ thị của hàm số nào dưới đây?
 (ảnh 1)

\(y = \frac{{{x^2} - 2x - 3}}{{x - 2}}\).

\(y = \frac{{{x^2} - 2x}}{{x + 1}}\).

\(y = \frac{{{x^2} + 3x}}{{x - 2}}\).

\(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đồ thị hàm số có tiệm cận đứng là \(x = - 1\).

Đồ thị hàm số cắt trục \(Oy\) tại điểm \(\left( {0;2} \right)\). Do đó \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

index_html_b73f06f893e32e14.gif

Ta có \({\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)^2} = {\overrightarrow {AB} ^2} + {\overrightarrow {AC} ^2} + {\overrightarrow {AD} ^2} + 2.\overrightarrow {AB} .\overrightarrow {AC} + 2.\overrightarrow {AC} .\overrightarrow {AD} + 2\overrightarrow {AB} .\overrightarrow {AD} \)

\( = {\overrightarrow {AB} ^2} + {\overrightarrow {AC} ^2} + {\overrightarrow {AD} ^2} + 2.\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) + 2.\left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {AD} } \right|.\cos \left( {\overrightarrow {AC} ,\overrightarrow {AD} } \right) + 2\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AD} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right)\)

\( = {12^2} + {12^2} + {12^2} + 2.12.12.\cos 60^\circ + 2.12.12.\cos 60^\circ + 2.12.12.\cos 60^\circ \)\( = 864\).

Suy ra \(\left| {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right| = 12\sqrt 6 \). Do đó \(a = 12\).

Trả lời: \(12\).

Lời giải

Dựa vào đồ thị hàm số ta có \(I\left( { - 1;2} \right)\) là tâm đối xứng.

Suy ra \(m = - 1;n = 2\). Do đó \(m + n = 1\).

Trả lời: \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP