Cân nặng của một số quả mít trong một khu vườn được thống kê ở bảng sau

Hãy tính phương sai của mẫu số liệu ghép nhóm trên (kết quả làm tròn đến hàng phần trăm).
18,04.
6,40.
8,72.
2,53.
Quảng cáo
Trả lời:
Ta có bảng sau

Cân nặng trung bình của quả mít là \(\overline x = \frac{{8.5 + 12.7 + 17.9 + 5.11 + 8.13}}{{8 + 12 + 17 + 5 + 8}} = 8,72\).
Phương sai \({s^2} = \frac{{8.{{\left( {5 - 8,72} \right)}^2} + 12.{{\left( {7 - 8,72} \right)}^2} + 17.{{\left( {9 - 8,72} \right)}^2} + 5.{{\left( {11 - 8,72} \right)}^2} + 8.{{\left( {13 - 8,72} \right)}^2}}}{{8 + 12 + 17 + 5 + 8}} \approx 6,40\). Chọn B.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có \({\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)^2} = {\overrightarrow {AB} ^2} + {\overrightarrow {AC} ^2} + {\overrightarrow {AD} ^2} + 2.\overrightarrow {AB} .\overrightarrow {AC} + 2.\overrightarrow {AC} .\overrightarrow {AD} + 2\overrightarrow {AB} .\overrightarrow {AD} \)
\( = {\overrightarrow {AB} ^2} + {\overrightarrow {AC} ^2} + {\overrightarrow {AD} ^2} + 2.\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) + 2.\left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {AD} } \right|.\cos \left( {\overrightarrow {AC} ,\overrightarrow {AD} } \right) + 2\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AD} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right)\)
\( = {12^2} + {12^2} + {12^2} + 2.12.12.\cos 60^\circ + 2.12.12.\cos 60^\circ + 2.12.12.\cos 60^\circ \)\( = 864\).
Suy ra \(\left| {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right| = 12\sqrt 6 \). Do đó \(a = 12\).
Trả lời: \(12\).
Lời giải
a) Ta có \(G\left( {\frac{{1 - 2 + 3}}{3};\frac{{ - 1 + 5 + 4}}{3};\frac{{0 + 3 + 9}}{3}} \right)\)\( \Rightarrow G\left( {\frac{2}{3};\frac{8}{3};4} \right)\).
b) \(M \in \left( {Oxz} \right) \Rightarrow M\left( {a;0;c} \right)\).
Có \(\overrightarrow {AM} = \left( {a - 1;1;c} \right),\overrightarrow {AB} = \left( { - 3;6;3} \right)\)
Theo đề ta có \(\overrightarrow {AM} \) và \(\overrightarrow {AB} \) cùng phương \( \Rightarrow \frac{{a - 1}}{{ - 3}} = \frac{1}{6} = \frac{c}{3}\)\( \Rightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\c = \frac{1}{2}\end{array} \right.\).
Do đó \(a + b + c = \frac{1}{2} + 0 + \frac{1}{2} = 1\).
c) \(\overrightarrow {AB} = \left( { - 3;6;3} \right)\).
d) Giả sử \(D\left( {x;y;z} \right)\). Ta có \(\overrightarrow {DC} = \left( {3 - x;4 - y;9 - z} \right)\).
Để \(ABCD\) là hình bình hành thì \(\overrightarrow {AB} = \overrightarrow {DC} \) \( \Leftrightarrow \left\{ \begin{array}{l}3 - x = - 3\\4 - y = 6\\9 - z = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = - 2\\z = 6\end{array} \right. \Rightarrow D\left( {6; - 2;6} \right)\).
Đáp án: a) Sai; b) Sai; c) Sai; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\(4\).
\(2\).
\(1\).
\(3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



