Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau
Điểm cực tiểu của đồ thị hàm số đã cho là
\(x = 2\).
\(\left( { - 2;1} \right)\).
\(\left( {2; - 3} \right)\).
\(\left( { - 3;2} \right)\).
Quảng cáo
Trả lời:

Dựa vào bảng biến thiên ta có \(\left( {2; - 3} \right)\) là điểm cực tiểu của đồ thị hàm số. Chọn C.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chiếc flycam thứ nhất và thứ hai ở vị trí A, B.
Ta có \(A\left( {3;2;5} \right),B\left( { - 6; - 6;5} \right)\).
Gọi \(C\)là điểm đối xứng của \(A\) qua mặt phẳng \(\left( {Oxy} \right)\). Khi đó \(C\left( {3;2; - 5} \right)\).
Gọi \(I = BC \cap \left( {Oxy} \right)\) là vị trí trên mặt đất sao cho tổng khoảng cách từ vị trí đó tới hai chiếc flycam ngắn nhất.
Ta có \(IA + IB = IC + IB \ge BC\) nên \(IA + IB\) ngắn nhất khi ba điểm \(B,C,I\) thẳng hàng.
Ta có \(\overrightarrow {BC} = \left( {9;8; - 10} \right)\).
Vì \(I \in \left( {Oxy} \right) \Rightarrow I\left( {x;y;0} \right) \Rightarrow \overrightarrow {BI} = \left( {x + 6;y + 6; - 5} \right)\).
Ba điểm \(B,C,I\) thẳng hàng nên \(\frac{{x + 6}}{9} = \frac{{y + 6}}{8} = \frac{1}{2}\)\( \Rightarrow \left\{ \begin{array}{l}x = - \frac{3}{2}\\y = - 2\end{array} \right.\) \( \Rightarrow I\left( { - \frac{3}{2}; - 2;0} \right)\).
Suy ra \(IO = 2,5\) m.
Lời giải
Chiều cao của chiếc hộp khi gập tấm nhôm là \(x\) cm.
Kích thước hai đáy của chiếc hộp là \(30 - 2x\) cm.
Ta có \(\left\{ \begin{array}{l}x > 0\\30 - 2x > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x > 0\\x < 15\end{array} \right. \Leftrightarrow 0 < x < 15\).
Thể tích chiếc hộp \(V\left( x \right) = x{\left( {30 - 2x} \right)^2} = 4{x^3} - 120{x^2} + 900x\).
Có \(V'\left( x \right) = 12{x^2} - 240x + 900\); \(V'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = 15\end{array} \right.\).
Bài toán trở thành tìm \(x\left( {0 < x < 15} \right)\) sao cho \(V\left( x \right)\) là lớn nhất.
Vậy cần cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là 5 cm để chiếc hộp tạo thành có thể tích lớn nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.