Câu hỏi:

19/10/2025 17 Lưu

Để thiết kế một bể cá hình hộp chữ nhật, không có nắp, có độ dài một cạnh ở đáy bằng 80 cm, thể tích 16000 cm3, người thợ dùng loại kính để sử dụng mặt bên có giá thành 80000 đồng/m2 và loại kính để làm mặt đáy có giá thành 100000 đồng/m2. Chi phí thấp nhất để hoàn thành bể cá là bao nhiêu nghìn đồng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có 80000 đồng/m2 = 8 đồng/cm2; 100000 đồng/m2 = 10 đồng/cm2.

Gọi \(x\) (cm) là độ dài của một cạnh đáy còn lại của hình hộp, \(h\) (cm) là chiều cao của hình hộp ( \(x > 0,h > 0\)).

Thể tích của khối hộp \(V = x.80.h = 16000 \Rightarrow h = \frac{{16000}}{{80x}} = \frac{{200}}{x}\).

Do đó chi phí làm bể cá là

\(f\left( x \right) = 80x.10 + \left( {2.80.\frac{{200}}{x} + 2x.\frac{{200}}{x}} \right).8 = 800x + \frac{{256000}}{x} + 3200\) đồng.

Yêu cầu bài toán trở thành tìm giá trị nhỏ nhất của hàm số \(f\left( x \right) = 800x + \frac{{256000}}{x} + 3200\) trên \(\left( {0; + \infty } \right)\).

Ta có \(f'\left( x \right) = 800 - \frac{{256000}}{{{x^2}}} = 0 \Leftrightarrow x = 8\sqrt 5 \) vì \(x \in \left( {0; + \infty } \right)\)

Bảng biến thiên

index_html_53167d85e8d9c0ce.png

Vậy chi phí ít nhất để làm bể cá như yêu cầu đề bài khoảng 32 nghìn đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Hàm số nghịch biến trên khoảng \(\left( { - 1;1} \right)\).

b) Giá trị cực đại của hàm số là 2.

c) \(\mathop {\min }\limits_{\left[ {\frac{1}{2};2} \right]} f\left( x \right) = f\left( 1 \right) = - 2\).

d) Đồ thị hàm số đi qua gốc tọa độ nên \(f\left( 0 \right) = 0 \Rightarrow d = 0\).

Theo đề ta có \(\left\{ \begin{array}{l}f\left( { - 1} \right) = 2\\f\left( 1 \right) = - 2\\f'\left( { - 1} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - a + b - c = 2\\a + b + c = - 2\\3a - 2b + c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\\c = - 3\end{array} \right.\).

Suy ra \(f\left( x \right) = {x^3} - 3x\).

Do đó \(f\left( 5 \right) = {5^3} - 3.5 = 110\).

Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.

Lời giải

Ta có \(y = \frac{{{x^2} + 3x + 2}}{{x - 3}} = x + 6 + \frac{{20}}{{x - 3}}\).

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 6} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{20}}{{x - 3}} = 0\); \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x + 6} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{{20}}{{x - 3}} = 0\).

Do đó \(y = x + 6\) là tiệm cận xiên của đồ thị hàm số.

Suy ra \(g\left( { - 2} \right) = - 2 + 6 = 4\).

Trả lời: 4.

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 6} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{20}}{{x - 3}} = 0\); \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x + 6} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{{20}}{{x - 3}} = 0\).