Một em nhỏ cân nặng \(m = 25\) kg trượt trên cầu trượt dài 4 m. Biết rằng, cầu trượt có góc nghiêng so với phương nằm ngang là 30°.
Công \(A\) (N) sinh bởi một lực \(\overrightarrow F \) có độ dịch chuyển \(\overrightarrow d \) được tính bởi công thức \(A = \overrightarrow F .\overrightarrow d \). Hãy tính công sinh bởi trọng lực \(\overrightarrow P = m\overrightarrow g \) khi em nhỏ trượt hết chiều dài cầu trượt, cho biết vectơ gia tốc rơi tự do \(\overrightarrow g \) có độ lớn là \(g = 9,8\) m/s2.
Quảng cáo
Trả lời:

Độ lớn trọng lực tác dụng lên em nhỏ là \(P = m.g = 25.9,8 = 245\) (N).
Công sinh ra bởi trọng lực \(\overrightarrow P \) khi em nhỏ trượt hết chiều dài cầu trượt là
\(A = \overrightarrow P .\overrightarrow d = \left| {\overrightarrow P } \right|.\overrightarrow {\left| d \right|} .\cos \left( {\overrightarrow P ,\overrightarrow d } \right) = 245.4.\cos 60^\circ = 490\) (J).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hàm số nghịch biến trên khoảng \(\left( { - 1;1} \right)\).
b) Giá trị cực đại của hàm số là 2.
c) \(\mathop {\min }\limits_{\left[ {\frac{1}{2};2} \right]} f\left( x \right) = f\left( 1 \right) = - 2\).
d) Đồ thị hàm số đi qua gốc tọa độ nên \(f\left( 0 \right) = 0 \Rightarrow d = 0\).
Theo đề ta có \(\left\{ \begin{array}{l}f\left( { - 1} \right) = 2\\f\left( 1 \right) = - 2\\f'\left( { - 1} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - a + b - c = 2\\a + b + c = - 2\\3a - 2b + c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\\c = - 3\end{array} \right.\).
Suy ra \(f\left( x \right) = {x^3} - 3x\).
Do đó \(f\left( 5 \right) = {5^3} - 3.5 = 110\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Lời giải
Ta có \(y = \frac{{{x^2} + 3x + 2}}{{x - 3}} = x + 6 + \frac{{20}}{{x - 3}}\).
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 6} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{20}}{{x - 3}} = 0\); \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x + 6} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{{20}}{{x - 3}} = 0\).
Do đó \(y = x + 6\) là tiệm cận xiên của đồ thị hàm số.
Suy ra \(g\left( { - 2} \right) = - 2 + 6 = 4\).
Trả lời: 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.