Giá trị của biểu thức \(N = \sqrt {9 - 4\sqrt 5 } + \sqrt {9 + 4\sqrt 5 } \) bằng
Câu hỏi trong đề: Đề kiểm tra Toán 9 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:
Chọn D
Ta có: \(9 - 4\sqrt 5 = {\left( {2 - \sqrt 5 } \right)^2};\,\,9 + 4\sqrt 5 = {\left( {2 + \sqrt 5 } \right)^2}.\)
\(N = \sqrt {9 - 4\sqrt 5 } + \sqrt {9 + 4\sqrt 5 } = \sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} + \sqrt {{{\left( {2 + \sqrt 5 } \right)}^2}} = \left| {2 - \sqrt 5 } \right| + \left| {2 + \sqrt 5 } \right| = 2\sqrt 5 \)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thay \(s = 220\,;\,\,g = 9,81\) vào công thức \(s = \sqrt {dg} ,\) ta được:
\(\sqrt {9,81 \cdot d} = 220\)
\(9,81d = {220^2}\)
\[d = \frac{{{{220}^2}}}{{9,81}} \approx 4934\;\,({\rm{m)}}\]
Vậy độ sâu của đại dương nơi xuất phát con sóng thần này là \[4934{\rm{ m}}.\]
Đáp án: 4934.
Câu 2
Lời giải
Chọn C
Áp dụng công thức khoảng cách \[d = \sqrt[3]{{6{t^2}}}\].
Khoảng cách giữa Trái Đất và Mặt Trời là: \[d = \sqrt[3]{{6 \cdot {{365}^2}}} \approx 92,8\] (triệu dặm).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
