Cho biểu thức \(P = \left( {\frac{{2x + 1}}{{\sqrt {{x^3}} - 1}} - \frac{1}{{\sqrt x - 1}}} \right):\left( {1 - \frac{{x + 4}}{{x + \sqrt x + 1}}} \right)\). Các giá trị nguyên của \(x\) để \(P\) nhận giá trị nguyên dương là
Câu hỏi trong đề: Bài tập ôn tập Toán 9 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:

Chọn D
ĐKXĐ: \[x \ge 0\,;\,\,x \ne 1\,;\,\,x \ne 9.\]
Ta có: \(P = \frac{{\sqrt x }}{{\sqrt x - 3}} = \frac{{\sqrt x - 3 + 3}}{{\sqrt x - 3}} = 1 + \frac{3}{{\sqrt x - 3}}.\)
Để \(P\) nhận giá trị là số nguyên dương thì \(\left\{ \begin{array}{l}P \in \mathbb{Z}\\P > 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}\frac{3}{{\sqrt x - 3}} \in \mathbb{Z}\\1 + \frac{3}{{\sqrt x - 3}} > 0\end{array} \right.\) nên \(\left\{ \begin{array}{l}\frac{3}{{\sqrt x - 3}} \in \mathbb{Z}\\\frac{{3 + \sqrt x - 3}}{{\sqrt x - 3}} > 0\end{array} \right..\)
Khi đó \(\left( {\sqrt x - 3} \right) \in \)Ư\[\left( 3 \right)\] và \(\frac{{\sqrt x }}{{\sqrt x - 3}} > 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} (*)\)
Suy ra \(\left( {\sqrt x - 3} \right) \in \left\{ {1\,;\,\,3} \right\}\)
• Với \(\sqrt x - 3 = 1\) thì \(\sqrt x = 4\) nên \(x = 16\) (thỏa mãn (*))
• Với \(\sqrt x - 3 = 3\) thì \(\sqrt x = 6\) nên \(x = 36\) (thỏa mãn (*))
Vậy các giá trị nguyên của \(x\) để \(P\) nhận giá trị nguyên dương là \(x = 16\,;\,\;x = 36\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thay \(d = 35\) vào công thức \(d = 7\sqrt {t - 12} \), ta được:
\(7\sqrt {t - 12} = 35\)
\(\sqrt {t - 12} = 5\)
\(t - 12 = 25\)
\(t = 37\) (năm)
Vậy băng tan cách đó: \(37 + 12 = 49\) (năm).
Đáp án: 49.Lời giải
Lời giải
Thay \(T = 4\,;\,\,g = 9,81\) vào công thức \(T = 2\pi \sqrt {\frac{L}{g}} \), ta được:
\(4 = 2\pi \cdot \sqrt {\frac{L}{{9,81}}} \)
\(\sqrt {\frac{L}{{9,81}}} = \frac{2}{\pi }\)
\(\frac{L}{{9,81}} = {\left( {\frac{2}{\pi }} \right)^2}\)
\(L = 9,81 \cdot {\left( {\frac{2}{\pi }} \right)^2} \approx 4\;\,({\rm{m)}}{\rm{.}}\)
Vậy phải làm một dây đu dài \[4{\rm{ m}}.\]
Đáp án: 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.