Cho biểu thức \(C = \left( {\frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{2}{{x - \sqrt x }}} \right):\frac{1}{{\sqrt x - 1}}\) với \(x > 0\,;\,\;x \ne 1.\) Giá trị nhỏ nhất của \(C\) là
Câu hỏi trong đề: Bài tập ôn tập Toán 9 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:

Ta có \(C = \left( {\frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{2}{{x - \sqrt x }}} \right):\frac{1}{{\sqrt x - 1}}\)
\( = \left( {\frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{2}{{\sqrt x \left( {\sqrt x - 1} \right)}}} \right)\left( {\sqrt x - 1} \right)\)
\( = \frac{{x + 2}}{{\sqrt x \left( {\sqrt x - 1} \right)}} \cdot \left( {\sqrt x - 1} \right) = \frac{{x + 2}}{{\sqrt x }}.\)
Khi đó \(C = \frac{{x + 2}}{{\sqrt x }}\) với \(x > 0\,;\,\;x \ne 1.\)
Xét \(C = \frac{{x + 2}}{{\sqrt x }} = \frac{x}{{\sqrt x }} + \frac{2}{{\sqrt x }} = \sqrt x + \frac{2}{{\sqrt x }}\).
Với \(x > 0\,;\,\;x \ne 1,\) áp dụng bất đẳng thức Cauchy cho hai số dương \(\sqrt x \) và \(\frac{2}{{\sqrt x }}\), ta được:
\(C = \sqrt x + \frac{2}{{\sqrt x }} \ge 2\sqrt 2 .\)
Dấu xảy ra khi \(\sqrt x = \frac{2}{{\sqrt x }}\) hay \(x = 2\) (thỏa mãn).
Vậy giá trị nhỏ nhất của \(C\) là \(2\sqrt 2 \) khi \(x = 2\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thay \(d = 35\) vào công thức \(d = 7\sqrt {t - 12} \), ta được:
\(7\sqrt {t - 12} = 35\)
\(\sqrt {t - 12} = 5\)
\(t - 12 = 25\)
\(t = 37\) (năm)
Vậy băng tan cách đó: \(37 + 12 = 49\) (năm).
Đáp án: 49.Lời giải
Lời giải
Thay \(T = 4\,;\,\,g = 9,81\) vào công thức \(T = 2\pi \sqrt {\frac{L}{g}} \), ta được:
\(4 = 2\pi \cdot \sqrt {\frac{L}{{9,81}}} \)
\(\sqrt {\frac{L}{{9,81}}} = \frac{2}{\pi }\)
\(\frac{L}{{9,81}} = {\left( {\frac{2}{\pi }} \right)^2}\)
\(L = 9,81 \cdot {\left( {\frac{2}{\pi }} \right)^2} \approx 4\;\,({\rm{m)}}{\rm{.}}\)
Vậy phải làm một dây đu dài \[4{\rm{ m}}.\]
Đáp án: 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.