Cho tứ diện \[ABCD\]. Các điểm \[P,Q\] lần lượt là trung điểm của \[AB\] và \[CD\]; điểm \[R\] nằm trên cạnh \[BC\] sao cho \[BR = 2RC\]. Gọi \[S\] là giao điểm của mặt phẳng \[\left( {PQR} \right)\] và cạnh \[AD\]. Tính tỉ số \[\frac{{SA}}{{SD}}\].
Cho tứ diện \[ABCD\]. Các điểm \[P,Q\] lần lượt là trung điểm của \[AB\] và \[CD\]; điểm \[R\] nằm trên cạnh \[BC\] sao cho \[BR = 2RC\]. Gọi \[S\] là giao điểm của mặt phẳng \[\left( {PQR} \right)\] và cạnh \[AD\]. Tính tỉ số \[\frac{{SA}}{{SD}}\].
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: 2
Trong mặt phẳng \[\left( {BCD} \right)\], gọi \[I = RQ \cap BD.\]
Trong \[\left( {ABD} \right)\], gọi \[S = PI \cap AD \Rightarrow S = AD \cap \left( {PQR} \right).\]
Gọi E là trung điểm BR ⇒ R là trung điểm đoạn EC.
Mà Q là trung điểm CD ⇒ RQ là đường trung bình tam giác DEC.
⇒ RQ // DE ⇒ RI // DE.
Xét tam giác BRI có: RI // DE và E là trung điểm BR ⇒ D là trung điểm BI.
Xét tam giác ABI có: AD là đường trung tuyến tương ứng với cạnh BI và IP là đường trung tuyến tương ứng cạnh AB.
Mà IP ∩ AD = {S} ⇒ S là trọng tâm tam giác ABI. Vậy \[\frac{{SA}}{{SD}} = 2\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
|
a) Đ |
b) S |
c) Đ |
d) Đ |
![Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình c (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/31-1760833938.png)
a) Ta có: \[\left\{ \begin{array}{l}S \in \left( {SAB} \right) \cap \left( {SCD} \right)\\AB\parallel CD\end{array} \right.\].
Suy ra giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\] là đường thẳng qua \[S\] và song song với \[AB\].
b) Gọi \(O\) là giao điểm của hai đường chéo \(AC\) và \(BD\).
Ta có \[\left\{ \begin{array}{l}O \in \left( {SAC} \right) \cap \left( {SBD} \right)\\S \in \left( {SAC} \right) \cap \left( {SBD} \right)\end{array} \right. \Rightarrow SO = \left( {SAC} \right) \cap \left( {SBD} \right)\].
Suy ra giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBD} \right)\] là đường thẳng \[SO.\]
c) Ta có: \[\left\{ \begin{array}{l}G \in \left( {SAB} \right) \cap \left( {JIG} \right)\\AB\parallel JI\end{array} \right.\]
Suy ra giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {IGJ} \right)\] là đường thẳng qua \[G\] và song song với \[AB\].
Lại có \(AB||CD\) nên giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {IGJ} \right)\] là đường thẳng qua \[G\] và song song với \[CD\].
d) Theo đề, ta có: \[NA = \frac{1}{3}SA \Rightarrow SN = \frac{2}{3}SA \Rightarrow \frac{{SN}}{{SA}} = \frac{2}{3}.\]
Lại có: \[SM = \frac{2}{3}SD \Leftrightarrow \frac{{SM}}{{SD}} = \frac{2}{3}\] nên \[\frac{{SN}}{{SA}} = \frac{{SM}}{{SD}} = \frac{2}{3}\]. Suy ra \[MN\parallel AD\].
Ta có: \[\left\{ \begin{array}{l}G \in \left( {GBC} \right) \cap \left( {GMN} \right)\\MN\parallel AD\\BC\parallel AD\end{array} \right.\]
Suy ra giao tuyến của hai mặt phẳng \[\left( {GMN} \right)\] và \[\left( {GBC} \right)\] là đường thẳng qua \[G\] và song song với \[AD.\]
Lời giải
Hướng dẫn giải
Đáp án đúng là: 7
Ta có: \[\sin 2x + 2 = m\] \[ \Leftrightarrow \sin 2x = m - 2\]
Điều kiện để phương trình có nghiệm là \[ - 1 \le m - 2 \le 1\] \[ \Leftrightarrow 1 \le m \le 3\] hay \[m \in \left[ {1;3} \right]\].
Suy ra \[a = 1;b = 3\].
Vậy \[T = a + 2b = 1 + 2.3 = 7\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

