Câu hỏi:

20/10/2025 212 Lưu

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật. Gọi \[I,J\] lần lượt là trung điểm của các cạnh \[AD,BC\] và \[G\] là trọng tâm của tam giác \[SAB\]. Khi đó:

a) Giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\] là đường thẳng qua \[S\] và song song với \[AB\].

b) Giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBD} \right)\] là đường thẳng qua \[S\] và song song với \[AC\].

c) Giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {IGJ} \right)\] là đường thẳng qua \[G\] và song song với \[CD\].

d) Lấy \[M\] trên \[SD\] sao cho \[SM = \frac{2}{3}SD\], \[N\] trên \[SA\] sao cho \[NA = \frac{1}{3}SA.\] Giao tuyến của hai mặt phẳng \[\left( {GMN} \right)\] và \[\left( {GBC} \right)\] là đường thẳng qua \[G\] và song song với \[AD.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Đ

b) S

c) Đ

d) Đ

 Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình c (ảnh 1)

a) Ta có: \[\left\{ \begin{array}{l}S \in \left( {SAB} \right) \cap \left( {SCD} \right)\\AB\parallel CD\end{array} \right.\].

Suy ra giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\] là đường thẳng qua \[S\] và song song với \[AB\].

b) Gọi \(O\) là giao điểm của hai đường chéo \(AC\) và \(BD\).

Ta có \[\left\{ \begin{array}{l}O \in \left( {SAC} \right) \cap \left( {SBD} \right)\\S \in \left( {SAC} \right) \cap \left( {SBD} \right)\end{array} \right. \Rightarrow SO = \left( {SAC} \right) \cap \left( {SBD} \right)\].

Suy ra giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBD} \right)\] là đường thẳng \[SO.\]

c) Ta có: \[\left\{ \begin{array}{l}G \in \left( {SAB} \right) \cap \left( {JIG} \right)\\AB\parallel JI\end{array} \right.\]

Suy ra giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {IGJ} \right)\] là đường thẳng qua \[G\] và song song với \[AB\].

Lại có \(AB||CD\) nên giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {IGJ} \right)\] là đường thẳng qua \[G\] và song song với \[CD\].

d) Theo đề, ta có: \[NA = \frac{1}{3}SA \Rightarrow SN = \frac{2}{3}SA \Rightarrow \frac{{SN}}{{SA}} = \frac{2}{3}.\]

Lại có: \[SM = \frac{2}{3}SD \Leftrightarrow \frac{{SM}}{{SD}} = \frac{2}{3}\] nên \[\frac{{SN}}{{SA}} = \frac{{SM}}{{SD}} = \frac{2}{3}\]. Suy ra \[MN\parallel AD\].

Ta có: \[\left\{ \begin{array}{l}G \in \left( {GBC} \right) \cap \left( {GMN} \right)\\MN\parallel AD\\BC\parallel AD\end{array} \right.\]

Suy ra giao tuyến của hai mặt phẳng \[\left( {GMN} \right)\] và \[\left( {GBC} \right)\] là đường thẳng qua \[G\] và song song với \[AD.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: 7

Ta có: \[\sin 2x + 2 = m\] \[ \Leftrightarrow \sin 2x = m - 2\]

Điều kiện để phương trình có nghiệm là \[ - 1 \le m - 2 \le 1\] \[ \Leftrightarrow 1 \le m \le 3\] hay \[m \in \left[ {1;3} \right]\].

Suy ra \[a = 1;b = 3\].

Vậy \[T = a + 2b = 1 + 2.3 = 7\].

Câu 2

A. Dãy số tăng.                                                
B. Dãy số giảm.
C. Dãy số không tăng, không giảm.                
D. Dãy số vừa tăng vừa giảm.

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có: \[{u_{n + 1}} - {u_n} = \frac{{10}}{{{3^{n + 1}}}} - \frac{{10}}{{{3^n}}} = \frac{{10}}{{{3^n}}}\left( {\frac{1}{3} - 1} \right) = \frac{{ - 20}}{{{3^{n + 1}}}} < 0.\]

Do đó \[{u_{n + 1}} < {u_n},\forall n \in {\mathbb{N}^*}\].

Vậy dãy số giảm.

Câu 4

A. \[M = \cos x.\]    
B. \[M = \cos 3x.\]          
C. \[M = \sin x.\]                                 
D. \[M = \sin 3x.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP