Cho hình chóp \(S.ABCD\) có đáy là hình bình hành tâm \(O\). Gọi \(M,N\) lần lượt là trung điểm của \(SB,BC\)
a) Đường thẳng \(AB\) song song với đường thẳng \(CD\).
b) Giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) là đường thẳng qua \(S\) và song song với \(AC\).
c) Đường thẳng \(CD\) song song với mặt phẳng \(\left( {OMN} \right)\).
d) Hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {OMN} \right)\) song song.
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành tâm \(O\). Gọi \(M,N\) lần lượt là trung điểm của \(SB,BC\)
a) Đường thẳng \(AB\) song song với đường thẳng \(CD\).
b) Giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) là đường thẳng qua \(S\) và song song với \(AC\).
c) Đường thẳng \(CD\) song song với mặt phẳng \(\left( {OMN} \right)\).
d) Hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {OMN} \right)\) song song.
Quảng cáo
Trả lời:

a) Vì \(ABCD\) là hình bình hành nên \(AB//CD\).
b) \(\left( {SAC} \right) \cap \left( {SBD} \right) = SO\).
c) Có \(O,N\)lần lượt là trung điểm \(BD,BC\) nên \(ON\)là đường trung bình của \(\Delta BCD\).
Suy ra \(ON//CD\) mà \(ON \subset \left( {OMN} \right)\) nên \(CD//\left( {OMN} \right)\) (1).
d) Tương tự \(OM//SD\) mà \(OM \subset \left( {OMN} \right)\) nên \(SD//\left( {OMN} \right)\) (2).
Từ (1) và (2), suy ra \(\left( {SCD} \right)//\left( {OMN} \right)\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Ta có \( - 1 \le \cos \left( {\frac{\pi }{{2024}}t} \right) \le 1\) \( \Rightarrow - 80.1 + 10 \le 80\cos \left( {\frac{\pi }{{2024}}t} \right) + 10 \le 80.1 + 10\)\( \Leftrightarrow - 70 \le h\left( t \right) \le 90\).
Suy ra chiều cao của sóng là \(90 - \left( { - 70} \right) = 160\) cm.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.