Một em nhỏ cân nặng \(m = 25\) kg trượt trên cầu trượt dài 4 m. Biết rằng, cầu trượt có góc nghiêng so với phương nằm ngang là 30°.
Công \(A\) (N) sinh bởi một lực \(\overrightarrow F \) có độ dịch chuyển \(\overrightarrow d \) được tính bởi công thức \(A = \overrightarrow F .\overrightarrow d \). Hãy tính công sinh bởi trọng lực \(\overrightarrow P = m\overrightarrow g \) khi em nhỏ trượt hết chiều dài cầu trượt, cho biết vectơ gia tốc rơi tự do \(\overrightarrow g \) có độ lớn là \(g = 9,8\) m/s2.
Quảng cáo
Trả lời:

Độ lớn trọng lực tác dụng lên em nhỏ là \(P = m.g = 25.9,8 = 245\) (N).
Công sinh ra bởi trọng lực \(\overrightarrow P \)khi em nhỏ trượt hết chiều dài cầu trượt là
\(A = \overrightarrow P .\overrightarrow d = \left| {\overrightarrow P } \right|.\overrightarrow {\left| d \right|} .\cos \left( {\overrightarrow P ,\overrightarrow d } \right) = 245.4.\cos 60^\circ = 490\)(J).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Đường thẳng \(y = 2\) là tiệm cận ngang của \(\left( C \right)\).
Đường thẳng \(y = 1\) là tiệm cận ngang của \(\left( C \right)\).
Đường thẳng \(x = 2\) là tiệm cận ngang của \(\left( C \right)\).
Đường thẳng \(x = 2\) là tiệm cận đứng của \(\left( C \right)\).
Lời giải
\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 2\) \( \Rightarrow y = 2\) là tiệm cận ngang của đồ thị hàm số. Chọn A.
Câu 2
\(\left( {0;2} \right)\).
\(\left( {1; + \infty } \right)\).
\(\left( { - \infty ;1} \right)\).
\(\left( { - 2;1} \right)\).
Lời giải
Dựa vào đồ thị hàm số ta có hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\). Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.