Bảng dưới thống kê khối lượng một số quả táo được lựa chọn ngẫu nhiên trong một thùng hàng

Khoảng biến thiên của mẫu số liệu ghép nhóm trên là
\(10\).
\(12\).
\(2\).
\(20\).
Quảng cáo
Trả lời:
Khoảng biến thiên của mẫu số liệu là \(90 - 80 = 10\). Chọn A.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số cá còn sống trong ao lúc đó là \(\frac{{31}}{{31 + t}}.300\) (con).
Sản lượng cá X tại thời điểm đó là \(f\left( t \right) = \frac{{31}}{{31 + t}}.300.0,45\left( {0,2 + \frac{{141}}{{155}}t - 0,05{t^2}} \right)\)\( = 4185.\frac{{0,2 + \frac{{141}}{{155}}t - 0,05{t^2}}}{{31 + t}}\).
Ta có \(f'\left( t \right) = 4185.\left[ {\frac{{\left( {\frac{{141}}{{155}} - 0,1t} \right)\left( {31 + t} \right) - \left( {0,2 + \frac{{141}}{{155}}t - 0,05{t^2}} \right)}}{{{{\left( {31 + t} \right)}^2}}}} \right]\)\( = 4185.\frac{{ - 0,05{t^2} - 3,1t + 28}}{{{{\left( {31 + t} \right)}^2}}}\);
Có \(f'\left( t \right) = 0 \Leftrightarrow - 0,05{t^2} - 3,1t + 28 = 0 \Leftrightarrow t = 8\) vì \(0 \le t \le 8\).
Có \(f\left( 0 \right) = 27;f\left( 8 \right) = 459;f\left( {10} \right) \approx 439\).
Vậy sản lượng lớn nhất có thể đạt được là 459 kg.
Lời giải
Gọi \(I\) là trọng tâm của tam giác \(ABC\).
Khi đó \(I\left( {1;1; - 1} \right)\) và \(\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} = \overrightarrow 0 \).
Khi đó \(f = \left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| + 3\left| {\overrightarrow {MD} } \right|\)\( = \left| {3\overrightarrow {MI} + \overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} } \right| + 3\left| {\overrightarrow {MD} } \right| = 3\left( {\left| {\overrightarrow {MI} } \right| + \left| {\overrightarrow {MD} } \right|} \right)\).
Bài toán trở thành tìm \(M\left( {a;b;0} \right) \in \left( {Oxy} \right)\) sao cho \(f = 3\left( {\left| {\overrightarrow {MI} } \right| + \left| {\overrightarrow {MD} } \right|} \right)\) đạt giá trị nhỏ nhất.
Vì \({z_I}.{z_D} > 0\) nên điểm \(I\) và \(D\) nằm cùng phía với mặt phẳng \(\left( {Oxy} \right)\).
Gọi \(I'\left( {1;1;1} \right)\) là điểm đối xứng với \(I\) qua mặt phẳng \(\left( {Oxy} \right)\).
Khi đó \(f = 3\left( {\left| {\overrightarrow {MI} } \right| + \left| {\overrightarrow {MD} } \right|} \right) = 3\left( {\left| {\overrightarrow {MI'} } \right| + \left| {\overrightarrow {MD} } \right|} \right) \ge 3I'D\).
Để \(f\) nhỏ nhất thì \(I';M;D\) thẳng hàng suy ra \(\overrightarrow {I'M} \) và \(\overrightarrow {I'D} \) cùng hướng
\( \Leftrightarrow \frac{{a - 1}}{{ - 1}} = \frac{{b - 1}}{1} = \frac{{ - 1}}{{ - 3}}\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{2}{3}\\b = \frac{4}{3}\end{array} \right.\) \( \Rightarrow M\left( {\frac{2}{3};\frac{4}{3};0} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(\left( {4;1 + \sqrt 2 ; - 1} \right);\left( {4;1 - \sqrt 2 ; - 1} \right)\).
\(\left( {4;1; - 1} \right)\).
\[\left( {2;1; - 1} \right)\].
\(\left( {2; - 1; - 1} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\(\left( { - \infty ;1} \right)\).
\(\left( { - \infty ; - 1} \right)\).
\[\left( {1;3} \right)\].
\(\left( {3; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
