Trong không gian \(Oxyz\), cho điểm \(K\left( {1;5; - 2} \right)\) và \(\overrightarrow {KH} = \left( {5;2; - 1} \right)\).Tọa độ của điểm \(H\) là
\(H\left( { - 4;3; - 1} \right)\).
\(H\left( {5;10;2} \right)\).
\[H\left( {6;7; - 3} \right)\].
\(H\left( {4; - 3;1} \right)\).
Quảng cáo
Trả lời:
Ta có \(\left\{ \begin{array}{l}{x_H} = 5 + 1 = 6\\{y_H} = 2 + 5 = 7\\{z_H} = - 1 - 2 = - 3\end{array} \right.\)\( \Rightarrow H\left( {6;7; - 3} \right)\). Chọn C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số cá còn sống trong ao lúc đó là \(\frac{{31}}{{31 + t}}.300\) (con).
Sản lượng cá X tại thời điểm đó là \(f\left( t \right) = \frac{{31}}{{31 + t}}.300.0,45\left( {0,2 + \frac{{141}}{{155}}t - 0,05{t^2}} \right)\)\( = 4185.\frac{{0,2 + \frac{{141}}{{155}}t - 0,05{t^2}}}{{31 + t}}\).
Ta có \(f'\left( t \right) = 4185.\left[ {\frac{{\left( {\frac{{141}}{{155}} - 0,1t} \right)\left( {31 + t} \right) - \left( {0,2 + \frac{{141}}{{155}}t - 0,05{t^2}} \right)}}{{{{\left( {31 + t} \right)}^2}}}} \right]\)\( = 4185.\frac{{ - 0,05{t^2} - 3,1t + 28}}{{{{\left( {31 + t} \right)}^2}}}\);
Có \(f'\left( t \right) = 0 \Leftrightarrow - 0,05{t^2} - 3,1t + 28 = 0 \Leftrightarrow t = 8\) vì \(0 \le t \le 8\).
Có \(f\left( 0 \right) = 27;f\left( 8 \right) = 459;f\left( {10} \right) \approx 439\).
Vậy sản lượng lớn nhất có thể đạt được là 459 kg.
Lời giải
a) Hàm số đồng biến trên các khoảng \(\left( { - 1;0} \right)\) và \(\left( {1; + \infty } \right)\).
b) Có \(y' = f'\left( {x + 2} \right)\).
Hàm số đồng biến khi \(f'\left( {x + 2} \right) > 0\) \( \Leftrightarrow \left[ \begin{array}{l} - 1 < x + 2 < 0\\x + 2 > 1\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l} - 3 < x < - 2\\x > - 1\end{array} \right.\).
Do đó hàm số \(y = f\left( {x + 2} \right)\) đồng biến trên các khoảng \(\left( { - 3; - 2} \right)\) và \(\left( { - 1; + \infty } \right)\).
c) \(f\left( x \right)\) có 3 điểm cực trị.
d) \(\mathop {\max }\limits_{\left[ { - 1;1} \right]} f\left( x \right) = f\left( 0 \right) = 2\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(\left( { - \infty ;1} \right)\).
\(\left( { - \infty ; - 1} \right)\).
\[\left( {1;3} \right)\].
\(\left( {3; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

