Câu hỏi:

20/10/2025 12 Lưu

Phương trình \(\sqrt {3 - 2x} = x + 1\) có một nghiệm dạng \({x_0} = a + \sqrt b \) với \(a,b\) là các số nguyên. Tính giá trị biểu thức \(T = 2a + 3b\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\sqrt {3 - 2x} = x + 1\)\( \Leftrightarrow \left\{ \begin{array}{l}x + 1 \ge 0\\3 - 2x = {\left( {x + 1} \right)^2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x \ge - 1\\3 - 2x = {x^2} + 2x + 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x \ge - 1\\{x^2} + 4x - 2 = 0\end{array} \right.\)\( \Leftrightarrow x = - 2 + \sqrt 6 \).

Suy ra \(a = - 2;b = 6\). Do đó \(T = 2a + 3b = 14\).

Trả lời: 14.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ vị trí A người ta quan sát một cây cao (hình vẽ). Biết AH = 4 m, HB = 20 m, \(\widehat {BAC} = 45^\circ \). Tính chiều cao của cây?   (ảnh 2)

Trong tam giác AHB, ta có \(\tan \widehat {ABH} = \frac{{AH}}{{BH}} = \frac{4}{{20}} = \frac{1}{5} \Rightarrow \widehat {ABH} \approx 11,3^\circ \).

Suy ra \(\widehat {ABC} = 90^\circ - 11,3^\circ = 78,7^\circ \), \(\widehat {ACB} = 180^\circ - \left( {\widehat {BAC} + \widehat {ABC}} \right) = 56,3^\circ \).

Suy ra \(AB = \sqrt {A{H^2} + H{B^2}}  = 4\sqrt {26} \).

Áp dụng định lí sin trong tam giác ABC, ta có: \(\frac{{AB}}{{\sin C}} = \frac{{CB}}{{\sin A}} \Rightarrow CB = \frac{{AB.\sin A}}{{\sin C}} \approx 17,3\).

Vậy cây cao khoảng 17,3 m.

Lời giải

Một chất điểm A chịu tác dụng của ba lực \(\overrightarrow {{F_1 (ảnh 2)

Đặt \(\overrightarrow {{F_1}} = \overrightarrow {AB} ,\overrightarrow {{F_2}} = \overrightarrow {AD} ,\overrightarrow {{F_3}} = \overrightarrow {AE} \).

Vẽ hình chữ nhật ABCD.

Vì vật ở trạng thái cân bằng nên \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow 0 \) \( \Leftrightarrow \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AE} = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {AC} = - \overrightarrow {AE} \).

Ta có \(AB = 12,\widehat {CAD} = 180^\circ - 120^\circ = 60^\circ \Rightarrow \widehat {BAC} = 30^\circ \).

Tam giác ABC vuông tại B nên \(BC = AB\tan 30^\circ = 12.\frac{{\sqrt 3 }}{3} = 4\sqrt 3 = AD\).

Độ lớn lực \(\overrightarrow {{F_2}} \) bằng \(4\sqrt 3 \) N.

Ta có \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{{12}^2} + {{\left( {4\sqrt 3 } \right)}^2}} = 8\sqrt 3 \).

Do vậy \(\left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow {AE} } \right| = AC = 8\sqrt 3 \).

Câu 3

A. \(\left( {3;2} \right)\).                                 
B. \(\left( {5; - 1} \right)\).                      
C. \(\left( {4;0} \right)\).                                                               
D. \(\left( { - 2;5} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(X = \left\{ {1;\frac{3}{2}} \right\}\).       
B. \(X = \left\{ 1 \right\}\).                     
C. \(X = \left\{ 0 \right\}\).                                                             
D. \(X = \left\{ {\frac{3}{2}} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP