Câu hỏi:

24/10/2025 123 Lưu

Một hộp có 10 viên bi trắng và 15 viên bi đỏ, các viên bi có cùng kích thước và khối lượng. Lần thứ nhất lấy ngẫu nhiên một viên bi trong hộp và không trả lại. Lần thứ hai lẫy ngẫu nhiên thêm một viên bi nữa trong hộp đó.

Gọi A là biến cố: “Lần thứ hai lấy được 1 viên bi trắng”;

B là biến cố: “Lần thứ nhất lấy được 1 viên bi đỏ”.

Tính \[P\left( {A|B} \right)\].

\(\frac{5}{{12}}\).

\(\frac{3}{5}\).

\(\frac{1}{4}\).

\(\frac{7}{{30}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án A

Lần thứ nhất lấy được bi đỏ khi đó trong hộp chỉ còn lại \[24\] viên bị gồm \[10\] viên bị trắng và \[14\] viên bị đỏ.

Khi đó xác suất để lần thứ hai lấy được bi trắng biết lần thứ nhất lấy được bị đỏ là:

\[P\left( {A|B} \right) = \frac{{C_{10}^1}}{{C_{24}^1}} = \frac{5}{{12}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi các biến cố:

\({A_1}\): “Học sinh được chọn đạt huy chương vàng”;

\({A_2}\): “Học sinh được chọn đạt huy chương bạc”;

\({A_3}\): “Học sinh được chọn đạt huy chương đồng”;

B: “Học sinh được chọn học lớp 12 và đạt huy chương”.

Theo đề bài, ta có

\(P\left( {{A_1}} \right) = \frac{{15}}{{500}} = 0,03;P\left( {{A_2}} \right) = \frac{{80}}{{500}} = 0,16;\)

\(P\left( {{A_3}} \right) = \frac{{500.60{\rm{\% }} - \left( {15 + 80} \right)}}{{500}} = 0,41\);

\(P\left( {B\mid {A_1}} \right) = \frac{6}{{300}} = 0,02;P\left( {B\mid {A_2}} \right) = \frac{{24}}{{300}} = 0,08;P\left( {B\mid {A_3}} \right) = \frac{{500.9{\rm{\% }}}}{{300}} = 0,15\).

Do đó, theo công thức Bayes, xác suất chọn được một học sinh đạt huy chương đồng nếu biết học sinh đó là học sinh lớp 12 và đạt huy chương là

\(P\left( {{A_3}\mid B} \right) = \frac{{P\left( {B\mid {A_3}} \right).P\left( {{A_3}} \right)}}{{P\left( {B\mid {A_1}} \right).P\left( {{A_1}} \right) + P\left( {B\mid {A_2}} \right).P\left( {{A_2}} \right) + P\left( {B\mid {A_3}} \right).P\left( {{A_3}} \right)}}\)

                \( = \frac{{0,15.0,41}}{{0,02.0,03 + 0,08.0,16 + 0,15.0,41}} \approx 82{\rm{\% }}\).

Vậy \(a = 82\).

Đáp án: 82.

Lời giải

a) Đúng. Do phân xưởng thứ nhất sản xuất \(60{\rm{\% }}\) tổng số sản phẩm của cả nhà máy nên xác suất để sản phẩm đó do phân xưởng thứ nhất sản xuất là 0,6.

b) Đúng. Gọi A là biến cố “Chọn được sản phẩm từ phân xưởng thứ nhất”,

\(\overline A \) là biến cố “Chọn được sản phẩm từ phân xưởng thứ hai”.

B là biến cố “Chọn được sản phẩm là phế phẩm”.

Khi đó: \(P\left( A \right) = 0,6;P\left( {\overline A } \right) = 0,4\);

\(P\left( {B\mid A} \right) = 0,16;P\left( {\overline B \mid A} \right) = 0,84;P\left( {B\mid \overline A } \right) = 0,2\).

Áp dụng công thức tính xác suất tính xác suất toàn phần, ta có:

\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B\mid \overline A } \right)\)

\( = 0,6.0,16 + 0,4.0,2 = 0,176\).

Vậy xác suất lấy được phế phẩm là 0,176.

c) Đúng. Chọn được phế phẩm, biến cố phế phẩm đó do phân xưởng thứ nhất sản xuất là \(A\mid B\), áp dụng công thức Bayes, ta được:

\(P\left( {A\mid B} \right) = \frac{{P\left( A \right).P\left( {B\mid A} \right)}}{{P\left( B \right)}} = \frac{{0,6.0,16}}{{0,176}} = \frac{6}{{11}} \approx 0,55\).

d) Sai. Khi lấy được sản phẩm tốt, để so sánh khả năng sản phẩm thuộc phân xưởng, ta tính xác suất để sản phẩm tốt được chọn ấy thuộc phân xưởng thứ nhất

Từ ý a) suy ra \(P\left( {\overline B } \right) = 1 - 0,176 = 0,824\).

Theo công thức Bayes, ta có: \(P\left( {A\mid \overline B } \right) = \frac{{P\left( A \right).P\left( {\overline B \mid A} \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,6.0,84}}{{0,824}} \approx 0,61\).

Vậy khả năng sản phẩm tốt được chọn từ phân xưởng thứ nhất cao hơn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP