Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư vào hai lĩnh vực A, B cho kết quả như sau:

Tính tổng độ lệch chuẩn cho các mẫu số liệu về tiền lãi của các nhà đầu tư vào hai lĩnh vực A và B (làm tròn kết quả cuối cùng đến hàng phần mười).
Quảng cáo
Trả lời:

Xét lĩnh vực A.
\(\overline {{x_A}} = \frac{{2.7,5 + 5.12,5 + 8.17,5 + 6.22,5 + 4.27,5}}{{2 + 5 + 8 + 6 + 4}} = 18\).
\(s_A^2 = \frac{{2.{{\left( {7,5 - 18} \right)}^2} + 5.{{\left( {12,5 - 18} \right)}^2} + 8.{{\left( {17,5 - 18} \right)}^2} + 6.{{\left( {22,5 - 18} \right)}^2} + 4.{{\left( {27,5 - 18} \right)}^2}}}{{2 + 5 + 8 + 6 + 4}} = \frac{{137}}{4}\).
Suy ra \({s_A} = \frac{{\sqrt {137} }}{2}\).
Xét lĩnh vực B
\(\overline {{x_B}} = \frac{{8.7,5 + 4.12,5 + 2.17,5 + 5.22,5 + 6.27,5}}{{8 + 4 + 2 + 5 + 6}} = \frac{{169}}{{10}}\).
\(s_B^2 = \frac{{8.{{\left( {7,5 - 16,9} \right)}^2} + 4.{{\left( {12,5 - 16,9} \right)}^2} + 2.{{\left( {17,5 - 16,9} \right)}^2} + 5.{{\left( {22,5 - 16,9} \right)}^2} + 6.{{\left( {27,5 - 16,9} \right)}^2}}}{{8 + 4 + 2 + 5 + 6}} = \frac{{1616}}{{25}}\).
Suy ra \({s_B} = \frac{{4\sqrt {101} }}{5}\).
Do đó \({s_A} + {s_B} = \frac{{\sqrt {137} }}{2} + \frac{{4\sqrt {101} }}{5} \approx 13,9\).
Trả lời: \(13,9\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ đồ thị của hàm số \(y = f'\left( x \right)\) ta suy ra bảng biến thiên của hàm số \(y = f\left( x \right)\) như hình

Vậy phương trình \(f\left( x \right) = f\left( 3 \right)\) có một nghiệm.
Lời giải
Có \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 2\\x = 3\end{array} \right.\).
Ta có bảng biến thiên

Dựa vào bảng biến thiên ta có hàm số có 2 điểm cực trị.
Trả lời: \(2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(3\).
\( - 2\).
\( - 1\).
\(2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


