Câu hỏi:

21/10/2025 5 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau

index_html_493bb154c86669d5.png

Tiệm cận đứng của đồ thị hàm số đã cho có phương trình là

\(x = - 1\).

\(x = - 3\).

\(x = 3\).

\(x = 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = - \infty \) \( \Rightarrow x = 1\) là tiệm cận đứng của đồ thị hàm số. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Hàm số nghịch biến trên khoảng \(\left( { - 1;1} \right)\).

b) Giá trị cực đại của hàm số là 2.

c) \(\mathop {\min }\limits_{\left[ {\frac{1}{2};2} \right]} f\left( x \right) = f\left( 1 \right) = - 2\).

d) Đồ thị hàm số đi qua gốc tọa độ nên \(f\left( 0 \right) = 0 \Rightarrow d = 0\).

Theo đề ta có \(\left\{ \begin{array}{l}f\left( { - 1} \right) = 2\\f\left( 1 \right) = - 2\\f'\left( { - 1} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - a + b - c = 2\\a + b + c = - 2\\3a - 2b + c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\\c = - 3\end{array} \right.\).

Suy ra \(f\left( x \right) = {x^3} - 3x\).

Do đó \(f\left( 5 \right) = {5^3} - 3.5 = 110\).

Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.

Lời giải

Ta có 80000 đồng/m2 = 8 đồng/cm2; 100000 đồng/m2 = 10 đồng/cm2.

Gọi \(x\) (cm) là độ dài của một cạnh đáy còn lại của hình hộp, \(h\) (cm) là chiều cao của hình hộp ( \(x > 0,h > 0\)).

Thể tích của khối hộp \(V = x.80.h = 16000 \Rightarrow h = \frac{{16000}}{{80x}} = \frac{{200}}{x}\).

Do đó chi phí làm bể cá là

\(f\left( x \right) = 80x.10 + \left( {2.80.\frac{{200}}{x} + 2x.\frac{{200}}{x}} \right).8 = 800x + \frac{{256000}}{x} + 3200\) đồng.

Yêu cầu bài toán trở thành tìm giá trị nhỏ nhất của hàm số \(f\left( x \right) = 800x + \frac{{256000}}{x} + 3200\) trên \(\left( {0; + \infty } \right)\).

Ta có \(f'\left( x \right) = 800 - \frac{{256000}}{{{x^2}}} = 0 \Leftrightarrow x = 8\sqrt 5 \) vì \(x \in \left( {0; + \infty } \right)\)

Bảng biến thiên

index_html_53167d85e8d9c0ce.png

Vậy chi phí ít nhất để làm bể cá như yêu cầu đề bài khoảng 32 nghìn đồng.

Câu 3

\(\left( {0;2} \right)\).

\(\left( {1; + \infty } \right)\).

\(\left( { - \infty ;1} \right)\).

\(\left( { - 2;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Đường thẳng \(y = 2\) là tiệm cận ngang của \(\left( C \right)\).

Đường thẳng \(y = 1\) là tiệm cận ngang của \(\left( C \right)\).

Đường thẳng \(x = 2\) là tiệm cận ngang của \(\left( C \right)\).

Đường thẳng \(x = 2\) là tiệm cận đứng của \(\left( C \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP