Để đánh giá chất lượng một loa pin điện thoại mới, người ta ghi lại thời gian nghe nhạc liên tục của điện thoại được sạc đầy pin cho đến khi hết pin cho kết quả sau

Độ lệch chuẩn (làm tròn kết quả đến hàng phần trăm) của mẫu số liệu ghép nhóm trên là bao nhiêu?
Quảng cáo
Trả lời:

Thời gian trung bình \(\overline x = \frac{{2.5,25 + 8.5,75 + 15.6,25 + 10.6,75 + 5.7,25}}{{2 + 8 + 15 + 10 + 5}} = 6,35\).
Phương sai:
\(\overline x = \frac{{2.{{\left( {5,25 - 6,35} \right)}^2} + 8.{{\left( {5,75 - 6,35} \right)}^2} + 15.{{\left( {6,25 - 6,35} \right)}^2} + 10.{{\left( {6,75 - 6,35} \right)}^2} + 5.{{\left( {7,25 - 6,35} \right)}^2}}}{{2 + 8 + 15 + 10 + 5}} = 0,2775\).
Độ lệch chuẩn \(s = \sqrt {0,2775} \approx 0,53\).
Trả lời: 0,53.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hàm số nghịch biến trên khoảng \(\left( { - 1;1} \right)\).
b) Giá trị cực đại của hàm số là 2.
c) \(\mathop {\min }\limits_{\left[ {\frac{1}{2};2} \right]} f\left( x \right) = f\left( 1 \right) = - 2\).
d) Đồ thị hàm số đi qua gốc tọa độ nên \(f\left( 0 \right) = 0 \Rightarrow d = 0\).
Theo đề ta có \(\left\{ \begin{array}{l}f\left( { - 1} \right) = 2\\f\left( 1 \right) = - 2\\f'\left( { - 1} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - a + b - c = 2\\a + b + c = - 2\\3a - 2b + c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\\c = - 3\end{array} \right.\).
Suy ra \(f\left( x \right) = {x^3} - 3x\).
Do đó \(f\left( 5 \right) = {5^3} - 3.5 = 110\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Lời giải
Ta có \(y = \frac{{{x^2} + 3x + 2}}{{x - 3}} = x + 6 + \frac{{20}}{{x - 3}}\).
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 6} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{20}}{{x - 3}} = 0\); \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x + 6} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{{20}}{{x - 3}} = 0\).
Do đó \(y = x + 6\) là tiệm cận xiên của đồ thị hàm số.
Suy ra \(g\left( { - 2} \right) = - 2 + 6 = 4\).
Trả lời: 4.
Câu 3
\(x = - 1\).
\(x = - 3\).
\(x = 3\).
\(x = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Đường thẳng \(y = 2\) là tiệm cận ngang của \(\left( C \right)\).
Đường thẳng \(y = 1\) là tiệm cận ngang của \(\left( C \right)\).
Đường thẳng \(x = 2\) là tiệm cận ngang của \(\left( C \right)\).
Đường thẳng \(x = 2\) là tiệm cận đứng của \(\left( C \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(A\left( {3; - 1;0} \right)\).
\(A\left( { - 1;3;0} \right)\).
\(A\left( {3;0; - 1} \right)\).
\(A\left( { - 1;0;3} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(\overrightarrow {IN} - \overrightarrow {IE} = \overrightarrow {NE} \).
\(\overrightarrow {IN} + \overrightarrow {IE} = \overrightarrow {NE} \).
\(\overrightarrow {IN} + \overrightarrow {NE} = \overrightarrow {IE} \).
\(\overrightarrow {IE} - \overrightarrow {NE} = \overrightarrow {NI} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\(x = - 7\).
\(x = - 4\).
\(x = - 3\).
\(x = - 6\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


