Một chiếc xe đang kéo căng sợi dây cáp \(AB\) trong công trường xây dựng, trên đó đã thiết lập hệ tọa độ \(Oxyz\) như hình với độ dài đơn vị trên các trục tọa độ bằng 1 m. Tìm tọa độ của vectơ \(\overrightarrow {AB} \).

Quảng cáo
Trả lời:
Ta có \(\overrightarrow {OA} = 10\overrightarrow k \Rightarrow A\left( {0;0;10} \right)\) .
Ta có \(OH = OB.\cos 30^\circ = \frac{{15\sqrt 3 }}{2}\) .
\(OK = OB.\cos \left( {90^\circ - 30^\circ } \right) = \frac{{15}}{2}\) .
\( \Rightarrow B\left( {\frac{{15}}{2};\frac{{15\sqrt 3 }}{2};0} \right)\) \( \Rightarrow \overrightarrow {AB} = \left( {\frac{{15}}{2};\frac{{15\sqrt 3 }}{2}; - 10} \right)\) .
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hàm số nghịch biến trên khoảng \(\left( { - 1;1} \right)\).
b) Giá trị cực đại của hàm số là 2.
c) \(\mathop {\min }\limits_{\left[ {\frac{1}{2};2} \right]} f\left( x \right) = f\left( 1 \right) = - 2\).
d) Đồ thị hàm số đi qua gốc tọa độ nên \(f\left( 0 \right) = 0 \Rightarrow d = 0\).
Theo đề ta có \(\left\{ \begin{array}{l}f\left( { - 1} \right) = 2\\f\left( 1 \right) = - 2\\f'\left( { - 1} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - a + b - c = 2\\a + b + c = - 2\\3a - 2b + c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\\c = - 3\end{array} \right.\).
Suy ra \(f\left( x \right) = {x^3} - 3x\).
Do đó \(f\left( 5 \right) = {5^3} - 3.5 = 110\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Lời giải
Ta có \(y = \frac{{{x^2} + 3x + 2}}{{x - 3}} = x + 6 + \frac{{20}}{{x - 3}}\).
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 6} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{20}}{{x - 3}} = 0\); \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x + 6} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{{20}}{{x - 3}} = 0\).
Do đó \(y = x + 6\) là tiệm cận xiên của đồ thị hàm số.
Suy ra \(g\left( { - 2} \right) = - 2 + 6 = 4\).
Trả lời: 4.
Câu 3
\(x = - 1\).
\(x = - 3\).
\(x = 3\).
\(x = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Đường thẳng \(y = 2\) là tiệm cận ngang của \(\left( C \right)\).
Đường thẳng \(y = 1\) là tiệm cận ngang của \(\left( C \right)\).
Đường thẳng \(x = 2\) là tiệm cận ngang của \(\left( C \right)\).
Đường thẳng \(x = 2\) là tiệm cận đứng của \(\left( C \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(A\left( {3; - 1;0} \right)\).
\(A\left( { - 1;3;0} \right)\).
\(A\left( {3;0; - 1} \right)\).
\(A\left( { - 1;0;3} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(\overrightarrow {IN} - \overrightarrow {IE} = \overrightarrow {NE} \).
\(\overrightarrow {IN} + \overrightarrow {IE} = \overrightarrow {NE} \).
\(\overrightarrow {IN} + \overrightarrow {NE} = \overrightarrow {IE} \).
\(\overrightarrow {IE} - \overrightarrow {NE} = \overrightarrow {NI} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\(x = - 7\).
\(x = - 4\).
\(x = - 3\).
\(x = - 6\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


