Tìm giá trị nguyên nhỏ nhất của \[x\] thỏa mãn bất phương trình \[\frac{{4x + 9}}{3} + \frac{1}{2} \ge \frac{{2x - 1}}{4}\].
Tìm giá trị nguyên nhỏ nhất của \[x\] thỏa mãn bất phương trình \[\frac{{4x + 9}}{3} + \frac{1}{2} \ge \frac{{2x - 1}}{4}\].
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: −4
Ta có: \[\frac{{4x + 9}}{3} + \frac{1}{2} \ge \frac{{2x - 1}}{4}\]
\[\frac{{4\left( {4x + 9} \right)}}{{12}} + \frac{6}{{12}} \ge \frac{{3\left( {2x - 1} \right)}}{{12}}\]
\[4\left( {4x + 9} \right) + 6 \ge 3\left( {2x - 1} \right)\]
\[16x + 36 + 6 \ge 6x - 3\]
\[16x + 42 \ge 6x - 3\]
\[16x - 6x \ge - 3 - 42\]
\[10x \ge - 45\]
\[x \ge - \frac{9}{2}.\]
Vậy bất phương trình có nghiệm là \[x \ge - \frac{9}{2}.\]
Do đó, giá trị nguyên nhỏ nhất thỏa mãn bất phương trình trên là \[ - 4\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A

Xét tam giác \(ABC\) vuông tại \(A\), có \(\tan C = \frac{{AB}}{{AC}} = \frac{3}{4}.\)
Lời giải
Hướng dẫn giải
a) Với \(x > 0,{\rm{ }}x \ne 1\) ta có:
\(P = \left( {\frac{{x - 2}}{{x + 2\sqrt x }} + \frac{1}{{\sqrt x + 2}}} \right) \cdot \frac{{\sqrt x + 1}}{{\sqrt x - 1}}\)
\[ = \frac{{x - 2 + \sqrt x }}{{\left( {\sqrt x + 2} \right)\sqrt x }} \cdot \frac{{\sqrt x + 1}}{{\sqrt x - 1}}\]
\[ = \frac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\sqrt x }} \cdot \frac{{\sqrt x + 1}}{{\sqrt x - 1}}\]
\[ = \frac{{\sqrt x + 1}}{{\sqrt x }}\].
Vậy với \(x > 0,{\rm{ }}x \ne 1\) ta có \(P = \frac{{\sqrt x + 1}}{{\sqrt x }}.\)
b) Ta có \(P = \frac{{\sqrt x + 1}}{{\sqrt x }}\).\(BC\)
Theo đề, để \(2P = 2\sqrt x + 5\) thì \(\frac{{2\left( {\sqrt x + 1} \right)}}{{\sqrt x }} = 2\sqrt x + 5\)
Suy ra \(2\sqrt x + 2 = 2x + 5\sqrt x \) hay \(2x + 3\sqrt x - 2 = 0\) do đó \(\left( {\sqrt x + 2} \right)\left( {\sqrt x - \frac{1}{2}} \right) = 0\)
Suy ra \(\sqrt x + 2 = 0\) hoặc \(\sqrt x - \frac{1}{2} = 0\).
Do đó, \(\sqrt x = - 2\) (vô lí) hoặc \(\sqrt x = \frac{1}{2}\).
Suy ra \(x = \frac{1}{4}\) (thỏa mãn).
Vậy \(x = \frac{1}{4}\) thì \(2P = 2\sqrt x + 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
