Câu hỏi:

22/10/2025 1,512 Lưu

(1,5 điểm) Cho \(\Delta ABC\) nhọn có ba đỉnh nằm trên đường tròn \(\left( O \right)\). Điểm \(M\) di động trên cung nhỏ \(BC\). Vẽ \(MH\) vuông góc với \(AB\)\(H\), \(MK\) vuông góc với \(AC\)\(K\).

a) Chứng minh rằng \(AM\) là đường kính của đường tròn đi qua ba điểm \(A,\,\,H,\,\,K.\)

b) Chứng minh rằng \(HK = AM.\sin \widehat {BAC}\)

c) Xác định vị trí của điểm \(M\) trên cung nhỏ \(BC\) để \(HK\)dài nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Cho  \(\Delta ABC\) nhọn có ba đỉnh nằm (ảnh 1)

a) Gọi \(I\) là trung điểm của \(AM.\) Khi đó \(AI = MI = \frac{1}{2}AM.\)

Xét \(\Delta AHM\) vuông tại \(H\)\(HI\) là đường trung tuyến ứng với cạnh huyền \(AM\) nên \(HI = \frac{1}{2}AM.\)

Xét \(\Delta AKM\) vuông tại \(K\)\(KI\) là đường trung tuyến ứng với cạnh huyền \(AM\) nên \(KI = \frac{1}{2}AM.\)

Do đó \(AI = HI = MI = KI = \frac{1}{2}AM\) nên bốn điểm \(A,H,M,K\) cùng thuộc đường tròn tâm \(I,\) đường kính \(AM\).

Hay \(AM\) là đường kính của đường tròn \(\left( I \right)\) đi qua ba điểm \(A,\,\,H,\,\,K.\)

b) Gọi \(N\) là giao điểm của \(HI\) và đường tròn tâm \(I\) đường kính \(AM.\)

Suy ra \(\widehat {HKN} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn) hay \(\Delta HKN\) vuông tại \(K\)

Ta có \(HK = HN.\sin \widehat {HNK}\)

\(HN = AM\) (cùng là đường kính của đường tròn tâm \(I\))

\(\widehat {HNK} = \widehat {HAK}\) (hai góc nội tiếp cùng chắn cung \(HK\) của đường tròn tâm \(I\))

Suy ra \[HK = AM \cdot \sin \widehat {HAK} = AM \cdot \sin \widehat {BAC}.\]

c) Ta có \(\Delta ABC\) cố định nên \(\sin \widehat {BAC}\) không đổi

Do đó từ \(HK = AM.\sin \widehat {BAC}\), để \(HK\) dài nhất thì \(AM\) dài nhất mà \(AM\) là dây của đường tròn \(\left( O \right)\)

Nên \(AM\) dài nhất khi \(AM\) là đường kính của đường tròn \(\left( O \right)\)

Do đó \(M\) đối xứng với \(A\) qua \(\left( O \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Với \(a \ge 0,\,\,a \ne 4,\,\,a \ne 9\), ta có:

\(A = \frac{3}{{\sqrt a + 3}}:\left( {\frac{{\sqrt a - 2}}{{\sqrt a + 3}} + \frac{{\sqrt a - 3}}{{2 - \sqrt a }} - \frac{{9 - a}}{{a + \sqrt a - 6}}} \right)\)

\( = \frac{3}{{\sqrt a + 3}}:\left[ {\frac{{{{\left( {\sqrt a - 2} \right)}^2}}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}} - \frac{{\left( {\sqrt a - 3} \right)\left( {\sqrt a + 3} \right)}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}} - \frac{{9 - a}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}} \right]\)

\( = \frac{3}{{\sqrt a + 3}}:\left[ {\frac{{a - 4\sqrt a + 4}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}} - \frac{{a - 9}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}} - \frac{{9 - a}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}} \right]\)

\( = \frac{3}{{\sqrt a + 3}}:\left[ {\frac{{a - 4\sqrt a + 4 - a + 9 - 9 + a}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}} \right]\)

\( = \frac{3}{{\sqrt a + 3}}:\left[ {\frac{{a - 4\sqrt a + 4}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}} \right]\)

\( = \frac{3}{{\sqrt a + 3}}:\frac{{{{\left( {\sqrt a - 2} \right)}^2}}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}\)

\( = \frac{3}{{\sqrt a + 3}} \cdot \frac{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}{{{{\left( {\sqrt a - 2} \right)}^2}}}\)

\( = \frac{3}{{\sqrt a - 2}}\).

Vậy với \(a \ge 0,{\rm{ }}a \ne 4,{\rm{ }}a \ne 9\) ta được \(P = \frac{3}{{\sqrt a - 2}}\).

b) Ta có: \(A + \left| A \right| = 0\) suy ra \(\left| A \right| = - A\).

Do đó, \(A \le 0\) hay \(\frac{3}{{\sqrt a - 2}} \le 0\) suy ra \(\sqrt a - 2 < 0\) do đó \(\sqrt a < 2\).

Suy ra \(0 \le a < 4\).

Vậy \(0 \le a < 4\) là giá trị cần tìm.

Lời giải

Hướng dẫn giải

Đáp án: 8

Điều kiện xác định: \(x \ne 2,{\rm{ }}x \ne  - 2\).

Ta có: \(\frac{{x + 3}}{{x - 2}} - \frac{{x + 1}}{{x + 2}} = \frac{{{x^2} - 4x + 24}}{{{x^2} - 4}}\)

\(\frac{{\left( {x + 3} \right)\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{\left( {x + 1} \right)\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{{x^2} - 4x + 24}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\)

\(\left( {x + 3} \right)\left( {x + 2} \right) - \left( {x + 1} \right)\left( {x - 2} \right) = {x^2} - 4x + 24\)

\({x^2} + 5x + 6 - {x^2} + x + 2 = {x^2} - 4x + 24\)

\(6x + 8 - {x^2} + 4x - 24 = 0\)

\( - {x^2} + 10x - 16 = 0\)

\({x^2} - 10x + 16 = 0\)

\({x^2} - 2x - 8x + 16 = 0\)

\(x\left( {x - 2} \right) - 8\left( {x - 2} \right) = 0\)

\(\left( {x - 2} \right)\left( {x - 8} \right) = 0\)

Do đó, \(x - 2 = 0\) hoặc \(x - 8 = 0\)

Suy ra \(x = 2\) (loại) hoặc \(x = 8\) (thỏa mãn)

Vậy nghiệm của phương trình là \(x = 8\).

Câu 3

A. \(S = \pi \left( {{r^2} - {R^2}} \right).\)                            
B. \(S = \pi \left( {{r^2} + {R^2}} \right).\)                              
C. \(S = \pi \left( {{R^2} - {r^2}} \right).\)                                
D. Kết quả khác.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\sin \alpha .\)  
B. \(\tan \alpha .\)  
C. \(\cos \alpha .\)  
D. \(\cot \alpha .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP