Câu hỏi:

22/10/2025 12 Lưu

Một người quan sát một tòa nhà và đứng cách tòa nhà khoảng \[25{\rm{\;m}}\]. Góc nâng từ mắt người quan sát đến nóc tòa nhà là \[36^\circ \]. Nếu anh ta đi thêm \[5{\rm{\;m}}\] nữa, đến vị trí \[E\] nằm giữa \[C\] và \[H\], thì có góc nâng mới từ \[F\] đến nóc tòa nhà. Chiều cao \[CD\] tính từ chân đến mắt người quan sát là \[1,6{\rm{\;m}}{\rm{.}}\] (Các kết quả làm tròn đến hàng đơn vị)

Một người quan sát một tòa nhà và đứng cách tòa nhà khoảng \[25{\r (ảnh 1)

a) \[AK = KD \cdot \tan 36^\circ .\]

b) \[FK = 25{\rm{\;m}}{\rm{.}}\]

c) Độ dài tòa nhà lớn hơn 20 m.

d) Góc nâng từ \[F\] đến nóc tòa nhà khoảng \[42^\circ \].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: a) Đúng.  b) Sai.              c) Sai.                  d) Đúng.

Xét \[\Delta AKD\] vuông tại \[D\], ta có: \[\tan 36^\circ = \tan D = \frac{{AK}}{{KD}}\]O10-2024-GV154......... hay \[AK = AD \cdot \tan 36^\circ \].

Do đó, ý a) là đúng.

Ta có: \[FK = EH = CH - CE = 25 - 5 = 20{\rm{\;(m)}}{\rm{.}}\]O10-2024-GV154.........

Do đó, ý b) là đúng.

Từ \[\tan 36^\circ = \tan D = \frac{{AK}}{{KD}},\] ta có \[AK = KD \cdot \tan 36^\circ = 25 \cdot \tan 36^\circ \approx 18,164{\rm{\;(m)}}{\rm{.}}\]

Ta có \[AH = AK + KH \approx 18,164 + 1,6 = 19,764 \approx 20{\rm{\;(m)}}{\rm{.}}\]

Vậy độ dài tòa nhà chính là độ dài đoạn \[AH\] và khoảng 20 m.

Do đó, ý c) là sai.

Xét \[\Delta AFK\] vuông tại \[K\], ta có: \[\tan F = \frac{{AK}}{{KF}} \approx \frac{{18,164}}{{20}}\]O10-2024-GV154........., do đó \[\widehat {KFA} \approx 42^\circ .\]

Vậy góc nâng từ \[F\] đến nóc tòa nhà khoảng \[42^\circ \].

Vậy ý d) là đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Diện tích tấm bìa hình chữ nhật này là: \(50.30 = 1500{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\)

Chiều dài sau khi cắt tấm bìa là: \(50 - 2x{\rm{ }}\left( {{\rm{cm}}} \right)\).

Chiều rộng sau khi cắt tấm bìa là: \(30 - 2x{\rm{ }}\left( {{\rm{cm}}} \right)\).

Diện tích xung quanh của hộp là: \(2x\left( {50 - 2x + 30 - 2x} \right) = 2x\left( {80 - 4x} \right) = - 8{x^2} + 160x{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

Để diện tích xung quanh của hình hộp chữ nhật sau khi cắt là lớn nhất thì \( - 8{x^2} + 160x\) đạt giá trị lớn nhất.

Ta có: \( - 8{x^2} + 160x = - 8\left( {{x^2} - 20x + 100} \right) + 800 = - 8{\left( {x - 10} \right)^2} + 800\)

Với mọi \(x > 0,\) ta có: \( - 8{\left( {x - 10} \right)^2} \le 0\) nên \( - 8{\left( {x - 10} \right)^2} + 800 \le 800\).

Dấu “=” xảy ra khi \(x - 10 = 0\) hay \(x = 10\).

Vậy diện tích xung quanh hình hộp chữ nhật là \(800{\rm{ c}}{{\rm{m}}^2}\) khi \(x = 10{\rm{ cm}}\).

Câu 2

A. \(\sin \left( {90^\circ - \alpha } \right) = \cos \alpha .\)  
B. \(\tan \left( {90^\circ - \alpha } \right) = \cos \alpha .\)      
C. \(\cot \left( {90^\circ - \alpha } \right) = 1 - \tan \alpha .\)                                
D. \(\cot \left( {90^\circ - \alpha } \right) = \sin \alpha .\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Với mọi góc nhọn \(\alpha \), ta có

\(\sin \left( {90^\circ - \alpha } \right) = \cos \alpha \,;\,\,\cos \left( {90^\circ - \alpha } \right) = \sin \alpha ;\)

\[\tan \left( {90^\circ - \alpha } \right) = \cot \alpha \,;\,\,\cot \left( {90^\circ - \alpha } \right) = \tan \alpha .\]

Câu 3

A. \(x \le \frac{1}{2}.\)                            
B. \(x < \frac{1}{2}.\)                                
C. \(x > \frac{1}{2}.\)                             
D. \(x \ge \frac{1}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({\left( {5 - x} \right)^3}.\)               
B. \(5 - x.\)              
C. \(x - 5.\)                   
D. \(\left| {5 - x} \right|.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(NP = MN \cdot \tan P.\)                 
B. \(NP = MN \cdot \cos P.\)                   
C. \(NP = MP \cdot \cos P.\)                  
D. \(NP = MP \cdot \cot P.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP