Câu hỏi:

22/10/2025 5 Lưu

Đẳng thức nào sau đây không đúng?

A. \(\sqrt {16} + \sqrt {144} = 16.\)     
B. \(\sqrt {0,64} .\sqrt 9 = 2,4.\)
C. \(\sqrt {{{\left( { - 18} \right)}^2}} .\sqrt {{{\left( { - 6} \right)}^2}} = 108.\)                              
D. \(\sqrt {{{\left( { - 3} \right)}^2}} .\sqrt {{7^2}} = - 21.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Xét các đáp án, ta được:

\(\sqrt {16} + \sqrt {144} = 4 + 12 = 16.\) Do đó, đáp án A là đúng.

\(\sqrt {0,64} .\sqrt 9 = 0,8.3 = 2,4\). Do đó, đáp án B là đúng.

\(\sqrt {{{\left( { - 18} \right)}^2}} .\sqrt {{{\left( { - 6} \right)}^2}} = 18.6 = 108.\) Do đó, đáp án C là đúng.

\(\sqrt {{{\left( { - 3} \right)}^2}} .\sqrt {{7^2}} = 3.7 = 21 \ne - 21.\) Do đó, đáp án D là sai.

Vậy chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: 720

Gọi chiều dài, chiều rộng của sân trường lần lượt là \(x,\,y\,\,\left( {\rm{m}} \right).\)

Điều kiện: \(x > 16,\,\,y > 0\).

Theo đề, chiều dài hơn chiều rộng \(16\,\,{\rm{m}}\)nên \(x - y = 16\). (1)

Hai lần chiều dài kém 5 lần chiều rộng \(28\,\,{\rm{m}}\)nên \(5y - 2x = 28\,{\rm{.}}\) (2)

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}x - y = 16\\5y - 2x = 28\end{array} \right.\).

Từ (1) có \(x = 16 + y\) thay vào (2) được: \(5y - 2\left( {16 + y} \right) = 28\,\) hay \(3y - 32 = 28\,{\rm{.}}\)

Suy ra \(3y = 60\) nên \(y = 20\) (thỏa mãn).

Do đó, \(x = 16 + 20 = 36\) (thỏa mãn)

Vậy diện tích sân trường là \(36 \cdot 20 = 720\,\,\left( {{{\rm{m}}^2}} \right)\).

Lời giải

Hướng dẫn giải

Đáp án: −16

Ta có: \[\frac{{x + 1}}{3} - \frac{{x - 2}}{2} \ge 4\]

\[\frac{{2\left( {x + 1} \right)}}{6} - \frac{{3\left( {x - 2} \right)}}{6} \ge 4\]

\[\frac{{2\left( {x + 1} \right) - 3\left( {x - 2} \right)}}{6} - 4 \ge 0\]

\[\frac{{8 - x - 24}}{6} \ge 0\]

\[\frac{{ - x - 16}}{6} \ge 0\]

\[ - x - 16 \ge 0\]

\[x \le - 16\].

Do đó, giá trị nguyên lớn nhất thỏa mãn bất phương trình trên là \(x = - 16\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP