Tìm nghiệm nguyên nhỏ nhất thỏa mãn bất phương trình: \(3x - \left( {6 + 2x} \right) \le 3 \cdot \left( {x + 4} \right)\).
Tìm nghiệm nguyên nhỏ nhất thỏa mãn bất phương trình: \(3x - \left( {6 + 2x} \right) \le 3 \cdot \left( {x + 4} \right)\).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: −9
Ta có: \(3x - \left( {6 + 2x} \right) \le 3 \cdot \left( {x + 4} \right)\)
\(3x - 2x - 6 \le 3x + 12\)
\(x - 6 \le 3x + 12\)
\(3x - x \ge - 6 - 12\)
\(2x \ge - 18\)
\(x \ge - 9\).
Do đó nghiệm nguyên nhỏ nhất thỏa mãn bất phương trình là \( - 9\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: 20
Gọi giá tiền của một kilogram xoài và một kilogram vải lần lượt là \(x,\,y\) (nghìn đồng).
Điều kiện: \(x,\,y > 0.\)
Theo đề, An dự định mua \(2{\rm{ kg}}\) xoài và \(2{\rm{ kg}}\) vải hết \(100\) nghìn đồng nên có \(2x + 2y = 100\) (1)
Thực tế, An đã mua \(3{\rm{ kg}}\) xoài và \(1{\rm{ kg}}\) vải hết 90 nghìn đồng nên \(3x + y = 90\) (2)
Từ (1) và (2), có hệ phương trình \(\left\{ \begin{array}{l}2x + 2y = 100\\3x + y = 90\end{array} \right.\)
Từ (2) có \(y = 90 - 3x\) thế vào (1) ta được: \(2x + 2\left( {90 - 3x} \right) = 100\) hay \(2x - 6x + 180 = 100\).
Suy ra \(4x = 80\) nên \(x = 20\) (thỏa mãn).
Do đó, \(y = 90 - 3 \cdot 20 = 90 - 60 = 30\) (thỏa mãn).
Vậy giá tiền một kilogram xoài là 20 nghìn đồng.
Lời giải
Hướng dẫn giải
Gọi số máy móc công ty nên sử dụng là \(x\) máy \(\left( {x > 0,\,x \in \mathbb{N}} \right)\).
Trong một giờ số quả bóng tennis sản xuất được là \(30x\) (quả bóng).
Như vậy, số giờ để sản xuất \(8\,000\) quả bóng tennis là \(\frac{{8\,000}}{{30x}}\) giờ.
Mỗi giờ phải trả \(192\,000\)đồng cho người giám sát và chi phí thiết lập cho mỗi máy là 200 nghìn đồng nên chi phí sản xuất là
\(B = 200\,000x + \frac{{8\,000}}{{30x}} \cdot 192\,000 = 200\,000x + \frac{{51\,200\,000}}{x}\) (đồng)
Với hai số không âm \(a\) và \(b\) ta có \({\left( {\sqrt a - \sqrt b } \right)^2} \ge 0\) suy ra \(a + b \ge 2\sqrt {ab} \).
Áp dụng bất đẳng thức trên với hai số dương \(200\,000x\) và \(\frac{{51\,200\,000}}{x}\), ta được:
\(200\,000x + \,\frac{{51\,200\,000}}{x} \ge 2\sqrt {200\,000x \cdot \frac{{51\,200\,000}}{x}} = 6\,400\,000\)
Dấu “=” xảy ra khi \(200\,000x = \frac{{51\,200\,000}}{x}\) hay \({x^2} = 256\) suy ra \(x = 16\) (do \(x > 0,\,x \in \mathbb{N}\))
Vậy số máy móc công ty nên sử dụng là 16 máy để chi phí sản xuất là thấp nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.