Câu hỏi:

22/10/2025 22 Lưu

Cho tam giác vuông có \(\alpha \) là góc nhọn. Khẳng định nào sau đây là sai?

A. Tỉ số giữa cạnh huyền và cạnh kề được gọi là cosin của góc \(\alpha \), kí hiệu \(\sin \alpha .\)
B. Tỉ số giữa cạnh kề và cạnh huyền được gọi là cosin của góc \(\alpha \), kí hiệu \(\cos \alpha .\)
C. Tỉ số giữa cạnh đối và cạnh kề được gọi là tang của góc \(\alpha \), kí hiệu \(\tan \alpha .\)
D. Tỉ số giữa cạnh kề và cạnh đối được gọi là tang của góc \(\alpha \), kí hiệu \(\cot \alpha .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Khẳng định sai là: “Tỉ số giữa cạnh huyền và cạnh kề được gọi là cosin của góc \(\alpha \), kí hiệu \(\sin \alpha \)”.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho nửa đường tròn tâm \(O\) đường kính \(AB = (ảnh 1)

a) Xét \(\Delta CAO\) vuông tại \(A\) (\(CA\) là tiếp tuyến) nên ba điểm \(O,A,C\) cùng thuộc đường tròn đường kính \(CO.\) (1)

Xét \(\Delta CDO\) vuông tại \(D\) (\(DC\) là tiếp tuyến) nên ba điểm \(O,C,D\) cùng thuộc đường tròn đường kính \(CO.\) (2)

Từ (1) và (2) suy ra bốn điểm \(O,A,C,D\) cùng thuộc một đường tròn đường kính \(CO.\)

b) Gọi \(BD\) cắt \(AC\) tại \(A'\), \(BC\) cắt \(DF\) tại \(I\).

Xét \(\Delta ADB\) có trung tuyến \(OD = \frac{1}{2}AB\) nên \(\Delta ADB\) vuông tại \(D\).

Suy ra \(\Delta ADA'\) vuông tại \(D\).

Lại có \(CD = CA\) (tính chất hai tiếp tuyến cắt nhau) nên suy ra được \[CD = AC'\].

Suy ra \[\Delta CAD\] cân tại \[C\] nên \[\widehat {CAD} = \widehat {CDA}\].

\[\widehat {CAD} + \widehat {AA'D} = \widehat {CDA} + \widehat {CDA'} = 90^\circ \] nên \[\widehat {AA'D} = \widehat {A'DC}\].

Suy ra \(CA' = A'D\).

Từ đây suy ra \(CA' = CA = CD\) hay \(C\) là trung điểm của \(AA'\).

Mặt khác, \(DF\parallel AA '\) (cùng vuông góc với \(AB\)) nên theo định lí Thalès thì \(\frac{{ID}}{{CA'}} = \frac{{IF}}{{CA}}\left( { = \frac{{BI}}{{BC}}} \right)\) (2)

Từ (1) và (2) suy ra \(ID = IF\).

Do đó, \(BC\) đi qua trung điểm của \(DF.\)

c) Ta có: \(\cos \widehat {COD} = \frac{{OD}}{{OC}} = \frac{R}{{2R}} = \frac{1}{2}\) suy ra \(\widehat {COD} = 60^\circ .\)

Suy ra \(\widehat {AOD} = 180^\circ - \widehat {COD} = 180^\circ - 60^\circ = 120^\circ \).

Ta có \({S_{quat{\rm{ }}AOD}} = \frac{{\pi \cdot {R^2} \cdot 120^\circ }}{{360^\circ }} = \frac{{\pi {R^2}}}{3}\).

Áp dụng định lí Pythagore vào tam giác \(COD\), có \(CD = \sqrt {C{O^2} - O{D^2}} = \sqrt {4{R^2} - {R^2}} = R\sqrt 3 \).

Ta có: \({S_{\Delta OCD}} = \frac{1}{2}CD \cdot DO = \frac{1}{2} \cdot R\sqrt 3 \cdot R = \frac{{{R^2}\sqrt 3 }}{2}\).

Xét \(\Delta DCO\)\(\Delta ACO\), có: \(CO\) chung (gt)

                                            \(CA = CD\) (tính chất)

                                            \(OA = OD = R\) (gt)

Do đó, \(\Delta DCO = \Delta ACO\) (c.c.c).

Suy ra \({S_{\Delta ACO}} = {S_{\Delta COD}} = \frac{1}{2}{S_{ACDO}}\).

Do đó, \({S_{ACDO}} = 2{S_{\Delta CDO}} = {R^2}\sqrt 3 \).

Diện tích phần tam giác \(ACD\) nằm ngoài đường tròn là: \({R^2}\sqrt 3 - \frac{{\pi {R^2}}}{3} = \left( {\sqrt 3 - \frac{\pi }{3}} \right){R^2}\).

Câu 2

A. \(x \ne 2.\)           
B. \(x \ne 3.\)           
C. \(x \ne - 2;{\rm{ }}x \ne 3.\)               
D. \(x \ne - 3;{\rm{ }}x \ne 2.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Điều kiện xác định của phương trình \(\frac{{4x - 1}}{{x + 2}} + 1 = \frac{3}{{x - 3}}\)\(x + 2 \ne 0\)\(x - 3 \ne 0\) hay \(x \ne - 2;{\rm{ }}x \ne 3.\)