Câu hỏi:

24/10/2025 53 Lưu

Trong một đợt kiểm tra sức khoẻ, có một loại bệnh X mà tỉ lệ người mắc bệnh là \(0,2\% \) và một loại xét nghiệm Y mà ai mắc bệnh X khi xét nghiệm Y cũng có phản ứng dương tính. Tuy nhiên, có \(6\% \) những người không bị bệnh X lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả sử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh X là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?    

A. \[0,3\].                     
B. \[0,03\].                   
C. \(0,04\).                            
D. \[0,4\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Xét các biến cố:

\(A:\) "Người được chọn mắc bệnh X";

\(B:\) "Người được chọn có phản ứng dương tính với xét nghiệm Y".

Theo giả thiết ta có: \(P\left( A \right) = 0,002;\;\;P\left( {\bar A} \right) = 1 - 0,002 = 0,998\);

\(P\left( {B\mid A} \right) = 1;\;\;P\left( {B\mid \bar A} \right) = 0,06\).

Theo công thức Bayes, ta có:

\(P\left( {A\mid B} \right) = \frac{{P\left( A \right).P\left( {B\mid A} \right)}}{{P\left( A \right).P\left( {B\mid A} \right) + P\left( {\bar A} \right).P\left( {B\mid \bar A} \right)}} = \frac{{0,002.1}}{{0,002.1 + 0,998.0,06}} \approx 0,03\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Gọi E là biến cố “Cây chọn được là cây Táo”, F là biến cố “Cậy chọn được ở khu B”.

Ta có \(P\left( {E|F} \right) = \frac{{100}}{{200}} = \frac{1}{2}\).

Lời giải

Gọi A là biến cố “Ứng dụng chọn loại câu hỏi dễ”;

B là biến cố “Học sinh trả lời đúng”.

Theo đề ta có \(P\left( A \right) = 0,79 \Rightarrow P\left( {\overline A } \right) = 0,21\); \(P\left( {\overline B |A} \right) = 0,1;P\left( {B|\overline A } \right) = 0,65\).

Có \(P\left( {B|A} \right) = 1 - P\left( {\overline B |A} \right) = 1 - 0,1 = 0,9\).

Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = 0,79.0,9 + 0,21.0,65 \approx 84,8\% \).

Trả lời: 84,8.