Trong một trường học, tỉ lệ học sinh nữ là \(52\% \). Tỉ lệ học sinh nữ và tỉ lệ học sinh tham gia câu lạc bộ nghệ thuật lần lượt là \(18\% \) và \(15\% \). Gặp ngẫu nhiên một học sinh của trường. Biết rằng học sinh có tham gia câu lạc bộ nghệ thuật. Tính xác suất học sinh đó là nam
Quảng cáo
Trả lời:
Chọn D
Gọi \(B\) “ Học sinh đó tham gia câu lạc bộ nghệ thuật ”
A là biến cố “Học sinh đó là nữ”
\(P\left( A \right) = 52\% = 0,52\), \(P\left( {\overline A } \right) = 1 - 0,52 = 0,48\).
\(P\left( {B|A} \right) = 18\% = 0,18\); \(P\left( {B|\overline A } \right) = 15\% = 0,15\)
Áp dụng công thức xác suất toàn phần
\(P\left( B \right) = P\left( {B|A} \right).P\left( A \right) + P\left( {B|\overline A } \right).P\left( {\overline A } \right)\)\( = 0,18.0,52 + 0,15.0,48 = \frac{{207}}{{1250}} = 0,1656\)
Xác suất để học sinh đó là nam, biết rằng học sinh đó tham gia câu lạc bộ nghệ thuật, ta áp dụng công thức Bayes
\(P\left( {\overline A |B} \right) = \frac{{P\left( {B|\overline A } \right).P\left( {\overline A } \right)}}{{P\left( B \right)}}\)\( = \frac{{0,15.0,48}}{{0,1656}} = \frac{{10}}{{23}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Gọi E là biến cố “Cây chọn được là cây Táo”, F là biến cố “Cậy chọn được ở khu B”.
Ta có \(P\left( {E|F} \right) = \frac{{100}}{{200}} = \frac{1}{2}\).
Lời giải
Gọi A là biến cố “Học sinh đó thích chơi thể thao”;
B là biến cố “Học sinh đó biết chơi cầu lông”.
Theo đề ta có \(P\left( A \right) = 0,7;P\left( {B|A} \right) = 0,8;P\left( {B|\overline A } \right) = 0,1\).
a) \(\overline A \) là biến cố “Học sinh đó không thích chơi thể thao”.
\(P\left( {\overline A } \right) = 1 - 0,7 = 0,3\).
b) \(P\left( {\overline B |\overline A } \right) = 1 - P\left( {B|\overline A } \right) = 1 - 0,1 = 0,9\).
c) \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = 0,7.0,8 + 0,3.0,1 = 0,59\).
d) \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,7.0,8}}{{0,59}} \approx 0,95\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.