PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Một lớp học có 17 học sinh nam và 24 học sinh nữ. Cô giáo gọi ngẫu nhiên lần lượt 2 học sinh (có thứ tự) lên trả lời câu hỏi. Xét các biến cố:
\(A:\) "Lần thứ nhất cô giáo gọi 1 học sinh nam";
\(B:\) "Lần thứ hai cô giáo gọi 1 học sinh nữ".
a) \(P(B\mid A) = 0,575.\)
b) \(P(B\mid \bar A) = 0,6.\)
c) \(P(\bar B\mid A) = 0,425.\)
d) \(P(\bar B\mid \bar A) = 0,4.\)
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Một lớp học có 17 học sinh nam và 24 học sinh nữ. Cô giáo gọi ngẫu nhiên lần lượt 2 học sinh (có thứ tự) lên trả lời câu hỏi. Xét các biến cố:
\(A:\) "Lần thứ nhất cô giáo gọi 1 học sinh nam";
\(B:\) "Lần thứ hai cô giáo gọi 1 học sinh nữ".
a) \(P(B\mid A) = 0,575.\)
b) \(P(B\mid \bar A) = 0,6.\)
c) \(P(\bar B\mid A) = 0,425.\)
d) \(P(\bar B\mid \bar A) = 0,4.\)
Quảng cáo
Trả lời:
a) \(P\left( {B|A} \right) = \frac{{24}}{{40}} = 0,6\).
b) \(P\left( {B|\overline A } \right) = \frac{{23}}{{40}} = 0,575\).
c) \(P\left( {\overline B |A} \right) = \frac{{16}}{{40}} = 0,4\).
d) \(P\left( {\overline B |\overline A } \right) = \frac{{17}}{{40}} = 0,425\).
Đáp án: a) Sai; b) Sai; c) Sai; d) Sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Gọi E là biến cố “Cây chọn được là cây Táo”, F là biến cố “Cậy chọn được ở khu B”.
Ta có \(P\left( {E|F} \right) = \frac{{100}}{{200}} = \frac{1}{2}\).
Lời giải
Gọi A là biến cố “Ứng dụng chọn loại câu hỏi dễ”;
B là biến cố “Học sinh trả lời đúng”.
Theo đề ta có \(P\left( A \right) = 0,79 \Rightarrow P\left( {\overline A } \right) = 0,21\); \(P\left( {\overline B |A} \right) = 0,1;P\left( {B|\overline A } \right) = 0,65\).
Có \(P\left( {B|A} \right) = 1 - P\left( {\overline B |A} \right) = 1 - 0,1 = 0,9\).
Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = 0,79.0,9 + 0,21.0,65 \approx 84,8\% \).
Trả lời: 84,8.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.