Câu hỏi:

24/10/2025 38 Lưu

Một xí nghiệp mỗi ngày sản xuất ra \(2000\) sản phẩm trong đó có \(39\) sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

 Gọi A là biến cố “Sản phẩm lấy ra lần thứ hai bị lỗi”;

B là biến cố “Sản phẩm lấy ra lần thứ nhất bị lỗi”.

Ta có \(P\left( B \right) = \frac{{39}}{{2000}} \Rightarrow P\left( B \right) = \frac{{1961}}{{2000}}\). \(P\left( {A|B} \right) = \frac{{38}}{{1999}};P\left( {A|\overline B } \right) = \frac{{39}}{{1999}}\).

Khi đó \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\)\( = \frac{{39}}{{2000}}.\frac{{38}}{{1999}} + \frac{{1961}}{{2000}}.\frac{{39}}{{1999}} \approx 0,02\).

Trả lời: 0,02.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Gọi E là biến cố “Cây chọn được là cây Táo”, F là biến cố “Cậy chọn được ở khu B”.

Ta có \(P\left( {E|F} \right) = \frac{{100}}{{200}} = \frac{1}{2}\).

Lời giải

Gọi A là biến cố “Ứng dụng chọn loại câu hỏi dễ”;

B là biến cố “Học sinh trả lời đúng”.

Theo đề ta có \(P\left( A \right) = 0,79 \Rightarrow P\left( {\overline A } \right) = 0,21\); \(P\left( {\overline B |A} \right) = 0,1;P\left( {B|\overline A } \right) = 0,65\).

Có \(P\left( {B|A} \right) = 1 - P\left( {\overline B |A} \right) = 1 - 0,1 = 0,9\).

Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = 0,79.0,9 + 0,21.0,65 \approx 84,8\% \).

Trả lời: 84,8.