Một xí nghiệp mỗi ngày sản xuất ra \(2000\) sản phẩm trong đó có \(39\) sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).
Một xí nghiệp mỗi ngày sản xuất ra \(2000\) sản phẩm trong đó có \(39\) sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).
Quảng cáo
Trả lời:
Gọi A là biến cố “Sản phẩm lấy ra lần thứ hai bị lỗi”;
B là biến cố “Sản phẩm lấy ra lần thứ nhất bị lỗi”.
Ta có \(P\left( B \right) = \frac{{39}}{{2000}} \Rightarrow P\left( B \right) = \frac{{1961}}{{2000}}\). \(P\left( {A|B} \right) = \frac{{38}}{{1999}};P\left( {A|\overline B } \right) = \frac{{39}}{{1999}}\).
Khi đó \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\)\( = \frac{{39}}{{2000}}.\frac{{38}}{{1999}} + \frac{{1961}}{{2000}}.\frac{{39}}{{1999}} \approx 0,02\).
Trả lời: 0,02.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Gọi E là biến cố “Cây chọn được là cây Táo”, F là biến cố “Cậy chọn được ở khu B”.
Ta có \(P\left( {E|F} \right) = \frac{{100}}{{200}} = \frac{1}{2}\).
Lời giải
Gọi A là biến cố “Ứng dụng chọn loại câu hỏi dễ”;
B là biến cố “Học sinh trả lời đúng”.
Theo đề ta có \(P\left( A \right) = 0,79 \Rightarrow P\left( {\overline A } \right) = 0,21\); \(P\left( {\overline B |A} \right) = 0,1;P\left( {B|\overline A } \right) = 0,65\).
Có \(P\left( {B|A} \right) = 1 - P\left( {\overline B |A} \right) = 1 - 0,1 = 0,9\).
Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = 0,79.0,9 + 0,21.0,65 \approx 84,8\% \).
Trả lời: 84,8.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.