Câu hỏi:

26/10/2025 12 Lưu

Phần I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu chỉ chọn một phương án.

Bảng biến thiên dưới đây là của hàm số nào trong các hàm số sau?

Phần I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu chỉ chọn một phương án. Câu 1. Bảng biến thiên dưới đây là của hàm số (ảnh 1)

A. \(y = - {x^3} + 3{x^2} - 3\).                                                                           

B. \(y = {x^3} + 3{x^2} - 1\).               
C. \(y = {x^3} - 3x + 2\).                                         
D. \(y = {x^3} - 3{x^2} + 2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét hàm số \(y = {x^3} - 3{x^2} + 2\).

Ta có: \(a = 1 > 0\,;\,\,y' = 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 2\\x = 2 \Rightarrow y = - 2\end{array} \right.\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[y = \frac{{{x^2} - x - 1}}{{x - 2}}\].                

B. \[y = \frac{{{x^2} + x - 1}}{{x - 2}}\].                             
C. \[y = \frac{{{x^2} - 2x - 1}}{{x - 2}}\].                            
D. \[y = \frac{{{x^2} + x + 1}}{{x - 2}}\].

Lời giải

Dựa vào đồ thị hàm số ta có tiệm cận đứng của đồ thị hàm số là \(x = 2\) và tiệm cận xiên của đồ thị hàm số là \(y = x + 1\).

+) Xét hàm số \[y = \frac{{{x^2} - x - 1}}{{x - 2}} = x + 1 + \frac{1}{{x - 2}}\] nhận \(y = x + 1\) là tiệm cận xiên của đồ thị hàm số.

Hàm số đó là \[y = \frac{{{x^2} - x - 1}}{{x - 2}}\]. Chọn A.

Lời giải

a) Chi phí để \(A\) sản xuất \(10\) tấn sản phẩm trong một tháng là \(C\left( {10} \right) = 100 + 30.10 = 400\)triệu đồng.

b) Số tiền \(A\) thu được khi bán \(10\) tấn sản phẩm cho \(B\)

\(R\left( {10} \right) = 10.P\left( {10} \right) = 10.\left( {45 - 0,{{001.10}^2}} \right) = 449\) triệu đồng.

c) Lợi nhuận mà \(A\) thu được là: \(H\left( x \right) = R\left( x \right) - C\left( x \right) = xP\left( x \right) - C\left( x \right)\)

\(P\left( x \right) = 45x - 0,001{x^3} - \left( {100 + 30x} \right) = - 0,001{x^3} + 15x - 100\).

d) Xét hàm số \(H\left( x \right) = - 0,001{x^3} + 15x - 100\), \(\left( {0 \le x \le 100} \right)\)

Ta có: \(H'\left( x \right) = - 0,003{x^2} + 15 = 0 \Leftrightarrow - 0,003{x^2} + 15 = 0 \Leftrightarrow x = 50\sqrt 2 \) (chọn).

Khi đó: \(H\left( 0 \right) = - 100\); \[H\left( {50\sqrt 2 } \right) = 500\sqrt 2 - 100\]; \(H\left( {100} \right) = 400\).

Vậy \(A\) bán cho \(B\) khoảng \(50\sqrt 2 \approx 70,7\) tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất bằng \[H\left( {50\sqrt 2 } \right) = 500\sqrt 2 - 100\].

Đáp án: a) Đúng;   b) Sai;   c) Đúng;   d) Đúng

Câu 3

A. \[S = 0.\]                     
B. \[S = - 2.\]                  
C. \[S = 2.\]                                   
D. \[S = 4.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[y = \frac{{ - 3}}{5}.\frac{{2x + 1}}{{x - 1}}.\] 
B.\(y = \frac{{2x - 1}}{{1 - x}}\).          
C.\(y = \frac{{ - 2x - 1}}{{ - x + 1}}.\)          
D. \(y = \frac{{2x - 1}}{{x - 1}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP