Phần III. Trắc nghiệm trả lời ngắn
Gọi \(S\) là tập hợp các giá trị \(m\) để tiệm cận xiên của đồ thị hàm số \(y = \frac{{m{x^2} + x - 3}}{{x - 1}}\) tạo với hai trục hệ tọa độ \(Oxy\) một tam giác có diện tích bằng \(2\). Khi đó tổng các giá trị của \(S\) bằng bao nhiêu?
Phần III. Trắc nghiệm trả lời ngắn
Gọi \(S\) là tập hợp các giá trị \(m\) để tiệm cận xiên của đồ thị hàm số \(y = \frac{{m{x^2} + x - 3}}{{x - 1}}\) tạo với hai trục hệ tọa độ \(Oxy\) một tam giác có diện tích bằng \(2\). Khi đó tổng các giá trị của \(S\) bằng bao nhiêu?
Quảng cáo
Trả lời:
Với \(m = 0\) ta có \(y = \frac{{x - 3}}{{x - 1}}\). Khi đó đồ thị hàm số không có tiệm cận xiên.
Với \(m = 2\) ta có \(y = \frac{{2{x^2} + x - 3}}{{x - 1}} = 2x + 3\). Khi đó đồ thị hàm số không có tiệm cận xiên.
Với \(m \ne 0;m \ne 2\) ta có \(y = mx + m + 1 + \frac{{m - 2}}{{x - 1}}\).
Ta có: \[\mathop {\lim }\limits_{x \to \pm \infty } \left( {y - mx - m - 1} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{m - 2}}{{x - 1}} = 0\] nên đường tiệm cận xiên của đồ thị hàm số là \(y = mx + m + 1\). Giao điểm của tiệm cận xiên với trục \(Ox\) là \(\left( {\frac{{ - m - 1}}{m};0} \right)\)
Giao điểm của tiệm cận xiên với trục \(Oy\) là \(\left( {0;m + 1} \right)\).
Đường tiệm cận xiên tạo thành một tam giác thì diện tích của tam giác:
\(S = \frac{1}{2}.\left| {m + 1} \right|.\left| {\frac{{ - m - 1}}{m}} \right| = 2 \Leftrightarrow {\left( {m + 1} \right)^2} = 4\left| m \right| \Leftrightarrow \left[ \begin{array}{l}{m^2} + 2m + 1 = 4m;\,\,\,\,\,\,\,khi\,\,m \ge 0\\{m^2} + 2m + 1 = - 4m;\,\,\,khi\,\,m < 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}{m^2} - 2m + 1 = 0;\,\,\,\,\,\,\,khi\,\,m \ge 0\\{m^2} + 6m + 1 = 0;\,\,\,\,\,\,\,khi\,\,m < 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = \frac{1}{2}\\m = - 3 + 2\sqrt 2 \\m = - 3 - 2\sqrt 2 \end{array} \right.\).
Vậy tổng giá trị của \(S\) bằng \(\frac{{ - 11}}{2} = - 5,5\).
Trả lời: −5,5.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[y = \frac{{{x^2} - x - 1}}{{x - 2}}\].
Lời giải
Dựa vào đồ thị hàm số ta có tiệm cận đứng của đồ thị hàm số là \(x = 2\) và tiệm cận xiên của đồ thị hàm số là \(y = x + 1\).
+) Xét hàm số \[y = \frac{{{x^2} - x - 1}}{{x - 2}} = x + 1 + \frac{1}{{x - 2}}\] nhận \(y = x + 1\) là tiệm cận xiên của đồ thị hàm số.
Hàm số đó là \[y = \frac{{{x^2} - x - 1}}{{x - 2}}\]. Chọn A.
Lời giải
Đồ thị hàm số đi qua các điểm \(A\left( { - 1; - 1} \right),B\left( {0;3} \right),C\left( {1;1} \right),D\left( {2; - 1} \right)\) nên ta có hệ phương trình
\(\left\{ \begin{array}{l} - a + b - c + d = - 1\\d = 3\\a + b + c + d = 1\\8a + 4b + 2c + d = - 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 3\\c = 0\\d = 3\end{array} \right.\). Do đó \(S = {t^3} - 3{t^2} + 3\).
Khi đó \(v = S' = 3{t^2} - 6t\); \(a = S'' = 6t - 6 = 12 \Rightarrow t = 3\).
Khi đó vận tốc của chuyển động là \(S'\left( 3 \right) = 27 - 18 = 9\) m/s.
Trả lời: 9.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(y = - {x^3} + 3{x^2} - 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


![Cho hàm số \[y = \frac{{ax + b}}{{cx - 1}}\] có đồ thị như hình vẽ bên dưới. Giá trị của tổng \[S = a + b + c\] bằng: A. \[S = 0.\] B. \[S = - 2.\] C. \[S = 2.\] D. \[S = 4.\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/5-1761390678.png)
