Phần III. Trắc nghiệm trả lời ngắn
Gọi \(S\) là tập hợp các giá trị \(m\) để tiệm cận xiên của đồ thị hàm số \(y = \frac{{m{x^2} + x - 3}}{{x - 1}}\) tạo với hai trục hệ tọa độ \(Oxy\) một tam giác có diện tích bằng \(2\). Khi đó tổng các giá trị của \(S\) bằng bao nhiêu?
Phần III. Trắc nghiệm trả lời ngắn
Gọi \(S\) là tập hợp các giá trị \(m\) để tiệm cận xiên của đồ thị hàm số \(y = \frac{{m{x^2} + x - 3}}{{x - 1}}\) tạo với hai trục hệ tọa độ \(Oxy\) một tam giác có diện tích bằng \(2\). Khi đó tổng các giá trị của \(S\) bằng bao nhiêu?
Quảng cáo
Trả lời:
Với \(m = 0\) ta có \(y = \frac{{x - 3}}{{x - 1}}\). Khi đó đồ thị hàm số không có tiệm cận xiên.
Với \(m = 2\) ta có \(y = \frac{{2{x^2} + x - 3}}{{x - 1}} = 2x + 3\). Khi đó đồ thị hàm số không có tiệm cận xiên.
Với \(m \ne 0;m \ne 2\) ta có \(y = mx + m + 1 + \frac{{m - 2}}{{x - 1}}\).
Ta có: \[\mathop {\lim }\limits_{x \to \pm \infty } \left( {y - mx - m - 1} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{m - 2}}{{x - 1}} = 0\] nên đường tiệm cận xiên của đồ thị hàm số là \(y = mx + m + 1\). Giao điểm của tiệm cận xiên với trục \(Ox\) là \(\left( {\frac{{ - m - 1}}{m};0} \right)\)
Giao điểm của tiệm cận xiên với trục \(Oy\) là \(\left( {0;m + 1} \right)\).
Đường tiệm cận xiên tạo thành một tam giác thì diện tích của tam giác:
\(S = \frac{1}{2}.\left| {m + 1} \right|.\left| {\frac{{ - m - 1}}{m}} \right| = 2 \Leftrightarrow {\left( {m + 1} \right)^2} = 4\left| m \right| \Leftrightarrow \left[ \begin{array}{l}{m^2} + 2m + 1 = 4m;\,\,\,\,\,\,\,khi\,\,m \ge 0\\{m^2} + 2m + 1 = - 4m;\,\,\,khi\,\,m < 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}{m^2} - 2m + 1 = 0;\,\,\,\,\,\,\,khi\,\,m \ge 0\\{m^2} + 6m + 1 = 0;\,\,\,\,\,\,\,khi\,\,m < 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = \frac{1}{2}\\m = - 3 + 2\sqrt 2 \\m = - 3 - 2\sqrt 2 \end{array} \right.\).
Vậy tổng giá trị của \(S\) bằng \(\frac{{ - 11}}{2} = - 5,5\).
Trả lời: −5,5.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[y = \frac{{{x^2} - x - 1}}{{x - 2}}\].
Lời giải
Dựa vào đồ thị hàm số ta có tiệm cận đứng của đồ thị hàm số là \(x = 2\) và tiệm cận xiên của đồ thị hàm số là \(y = x + 1\).
+) Xét hàm số \[y = \frac{{{x^2} - x - 1}}{{x - 2}} = x + 1 + \frac{1}{{x - 2}}\] nhận \(y = x + 1\) là tiệm cận xiên của đồ thị hàm số.
Hàm số đó là \[y = \frac{{{x^2} - x - 1}}{{x - 2}}\]. Chọn A.
Lời giải
a) Chi phí để \(A\) sản xuất \(10\) tấn sản phẩm trong một tháng là \(C\left( {10} \right) = 100 + 30.10 = 400\)triệu đồng.
b) Số tiền \(A\) thu được khi bán \(10\) tấn sản phẩm cho \(B\) là
\(R\left( {10} \right) = 10.P\left( {10} \right) = 10.\left( {45 - 0,{{001.10}^2}} \right) = 449\) triệu đồng.
c) Lợi nhuận mà \(A\) thu được là: \(H\left( x \right) = R\left( x \right) - C\left( x \right) = xP\left( x \right) - C\left( x \right)\)
\(P\left( x \right) = 45x - 0,001{x^3} - \left( {100 + 30x} \right) = - 0,001{x^3} + 15x - 100\).
d) Xét hàm số \(H\left( x \right) = - 0,001{x^3} + 15x - 100\), \(\left( {0 \le x \le 100} \right)\)
Ta có: \(H'\left( x \right) = - 0,003{x^2} + 15 = 0 \Leftrightarrow - 0,003{x^2} + 15 = 0 \Leftrightarrow x = 50\sqrt 2 \) (chọn).
Khi đó: \(H\left( 0 \right) = - 100\); \[H\left( {50\sqrt 2 } \right) = 500\sqrt 2 - 100\]; \(H\left( {100} \right) = 400\).
Vậy \(A\) bán cho \(B\) khoảng \(50\sqrt 2 \approx 70,7\) tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất bằng \[H\left( {50\sqrt 2 } \right) = 500\sqrt 2 - 100\].
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(y = - {x^3} + 3{x^2} - 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hàm số \[y = \frac{{ax + b}}{{cx - 1}}\] có đồ thị như hình vẽ bên dưới. Giá trị của tổng \[S = a + b + c\] bằng: A. \[S = 0.\] B. \[S = - 2.\] C. \[S = 2.\] D. \[S = 4.\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/5-1761390678.png)


![Đường cong hình bên là đồ thị hàm số \(y = {\rm{a}}{x^3} + b{x^2} + cx + d\). Xét các phát biểu sau: 1. \(a = - 1\) 2. \(ad < 0\) 3. \(ad > 0\) 4. \(d = - 1\) 5.\(a + c = b + 1\) Số phát biểu sai là: A. \[2\]. B. \[3\]. C. \[1\]. D. \[4\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/7-1761390753.png)