Cho hàm số \[y = f\left( x \right) = {x^3} - 6{x^2} - 15x + 20\].
a) Đồ thị hàm số \(y = f\left( x \right)\) cắt trục tung tại điểm có tung độ bằng \(20\).
b) Hàm số đồng biến trên khoảng \(\left( { - \infty \,;\, - 1} \right) \cap \left( {5\,;\, + \infty } \right)\).
c) Tâm đối xứng của đồ thị hàm số có toạ độ \(I\left( {2\,;\, - 26} \right)\).
d) Giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên khoảng \(\left( { - 4\,;\, + \infty } \right)\) bằng \( - 80\).
Cho hàm số \[y = f\left( x \right) = {x^3} - 6{x^2} - 15x + 20\].
a) Đồ thị hàm số \(y = f\left( x \right)\) cắt trục tung tại điểm có tung độ bằng \(20\).
b) Hàm số đồng biến trên khoảng \(\left( { - \infty \,;\, - 1} \right) \cap \left( {5\,;\, + \infty } \right)\).
c) Tâm đối xứng của đồ thị hàm số có toạ độ \(I\left( {2\,;\, - 26} \right)\).
d) Giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên khoảng \(\left( { - 4\,;\, + \infty } \right)\) bằng \( - 80\).
Quảng cáo
Trả lời:
a) Thay \(x = 0\) suy ra \(f\left( 0 \right) = 20\).
b) Ta có \(y' = 3{x^2} - 12x - 15 > 0 \Leftrightarrow \left[ \begin{array}{l}x < - 1\\x > 5\end{array} \right.\).
Do đó hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {5; + \infty } \right)\).
c) \({x_I} = \frac{{ - b}}{{3a}} = \frac{{ - \left( { - 6} \right)}}{{3.1}} = \frac{6}{3} = 2 \Rightarrow {y_I} = f\left( {{x_I}} \right) = f\left( 2 \right) = - 26\) suy ra \(I\left( {2\,;\, - 26} \right)\).
d) Ta có \(f'\left( x \right) = 3{x^2} - 12x - 15 \Rightarrow f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 5\end{array} \right.\)
Bảng biến thiên của hàm số trên khoảng \(\left( {4\,;\, + \infty } \right)\):

Vậy giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên khoảng \(\left( { - 4\,;\, + \infty } \right)\) bằng \( - 80\).
Đáp án: a) Đúng; b) Sai; c) Đúng; c) Đúng.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[y = \frac{{{x^2} - x - 1}}{{x - 2}}\].
Lời giải
Dựa vào đồ thị hàm số ta có tiệm cận đứng của đồ thị hàm số là \(x = 2\) và tiệm cận xiên của đồ thị hàm số là \(y = x + 1\).
+) Xét hàm số \[y = \frac{{{x^2} - x - 1}}{{x - 2}} = x + 1 + \frac{1}{{x - 2}}\] nhận \(y = x + 1\) là tiệm cận xiên của đồ thị hàm số.
Hàm số đó là \[y = \frac{{{x^2} - x - 1}}{{x - 2}}\]. Chọn A.
Lời giải
a) Chi phí để \(A\) sản xuất \(10\) tấn sản phẩm trong một tháng là \(C\left( {10} \right) = 100 + 30.10 = 400\)triệu đồng.
b) Số tiền \(A\) thu được khi bán \(10\) tấn sản phẩm cho \(B\) là
\(R\left( {10} \right) = 10.P\left( {10} \right) = 10.\left( {45 - 0,{{001.10}^2}} \right) = 449\) triệu đồng.
c) Lợi nhuận mà \(A\) thu được là: \(H\left( x \right) = R\left( x \right) - C\left( x \right) = xP\left( x \right) - C\left( x \right)\)
\(P\left( x \right) = 45x - 0,001{x^3} - \left( {100 + 30x} \right) = - 0,001{x^3} + 15x - 100\).
d) Xét hàm số \(H\left( x \right) = - 0,001{x^3} + 15x - 100\), \(\left( {0 \le x \le 100} \right)\)
Ta có: \(H'\left( x \right) = - 0,003{x^2} + 15 = 0 \Leftrightarrow - 0,003{x^2} + 15 = 0 \Leftrightarrow x = 50\sqrt 2 \) (chọn).
Khi đó: \(H\left( 0 \right) = - 100\); \[H\left( {50\sqrt 2 } \right) = 500\sqrt 2 - 100\]; \(H\left( {100} \right) = 400\).
Vậy \(A\) bán cho \(B\) khoảng \(50\sqrt 2 \approx 70,7\) tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất bằng \[H\left( {50\sqrt 2 } \right) = 500\sqrt 2 - 100\].
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(y = - {x^3} + 3{x^2} - 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hàm số \[y = \frac{{ax + b}}{{cx - 1}}\] có đồ thị như hình vẽ bên dưới. Giá trị của tổng \[S = a + b + c\] bằng: A. \[S = 0.\] B. \[S = - 2.\] C. \[S = 2.\] D. \[S = 4.\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/5-1761390678.png)

