Cho hàm số \(y = \frac{{ - {x^2} - 3x + 4}}{{x - 3}}\) có đồ thị là \(\left( C \right)\).
a) Đồ thị \(\left( C \right)\) có tiệm cận xiên là \(y = - x - 6\).
b) Đồ thị \(\left( C \right)\) nhận giao điểm \(I\left( {3\,;\, - 9} \right)\) làm tâm đối xứng.
c) Đồ thị \(\left( C \right)\) có hai điểm cực trị nằm 2 phía đối với \(Oy\).
d) Đồ thị không cắt trục \(Ox\).
Cho hàm số \(y = \frac{{ - {x^2} - 3x + 4}}{{x - 3}}\) có đồ thị là \(\left( C \right)\).
a) Đồ thị \(\left( C \right)\) có tiệm cận xiên là \(y = - x - 6\).
b) Đồ thị \(\left( C \right)\) nhận giao điểm \(I\left( {3\,;\, - 9} \right)\) làm tâm đối xứng.
c) Đồ thị \(\left( C \right)\) có hai điểm cực trị nằm 2 phía đối với \(Oy\).
d) Đồ thị không cắt trục \(Ox\).
Quảng cáo
Trả lời:
a) Ta có \(y = - x - 6 - \frac{{14}}{{x - 3}}\).
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( { - x - 6} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{ - 14}}{{x - 3}}} \right) = 0;\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( { - x - 6} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{ - 14}}{{x - 3}}} \right) = 0\).
Suy ra tiệm cận xiên của đồ thị hàm số là \(y = - x - 6\).
b) Phương trình đường tiệm cận đứng là \(x = 3\).
Suy ra giao điểm 2 tiệm cận là \(I\left( {3, - 9} \right)\) là tâm đối xứng.
c) \(y' = \frac{{ - {x^2} + 6x + 5}}{{{{\left( {x - 3} \right)}^2}}} = 0 \Leftrightarrow {x^2} - 6x - 5 = 0\) \(\left( * \right)\)
Phương trình \(\left( * \right)\) luôn có 2 nghiệm \({x_1} < 0 < {x_2}\) nên \(\left( C \right)\) luôn có 2 điểm cực trị nằm 2 phía đối với \(Oy\).
d) \(y = 0 \Leftrightarrow - {x^2} - 3x + 4 = 0\) và phương trình luôn có 2 nghiệm suy ra \(\left( C \right)\)cắt \(Ox\) tại hai điểm phân biệt.
Đáp án: a) Đúng; b) Đúng; c) Đúng; c) Sai.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[y = \frac{{{x^2} - x - 1}}{{x - 2}}\].
Lời giải
Dựa vào đồ thị hàm số ta có tiệm cận đứng của đồ thị hàm số là \(x = 2\) và tiệm cận xiên của đồ thị hàm số là \(y = x + 1\).
+) Xét hàm số \[y = \frac{{{x^2} - x - 1}}{{x - 2}} = x + 1 + \frac{1}{{x - 2}}\] nhận \(y = x + 1\) là tiệm cận xiên của đồ thị hàm số.
Hàm số đó là \[y = \frac{{{x^2} - x - 1}}{{x - 2}}\]. Chọn A.
Lời giải
a) Chi phí để \(A\) sản xuất \(10\) tấn sản phẩm trong một tháng là \(C\left( {10} \right) = 100 + 30.10 = 400\)triệu đồng.
b) Số tiền \(A\) thu được khi bán \(10\) tấn sản phẩm cho \(B\) là
\(R\left( {10} \right) = 10.P\left( {10} \right) = 10.\left( {45 - 0,{{001.10}^2}} \right) = 449\) triệu đồng.
c) Lợi nhuận mà \(A\) thu được là: \(H\left( x \right) = R\left( x \right) - C\left( x \right) = xP\left( x \right) - C\left( x \right)\)
\(P\left( x \right) = 45x - 0,001{x^3} - \left( {100 + 30x} \right) = - 0,001{x^3} + 15x - 100\).
d) Xét hàm số \(H\left( x \right) = - 0,001{x^3} + 15x - 100\), \(\left( {0 \le x \le 100} \right)\)
Ta có: \(H'\left( x \right) = - 0,003{x^2} + 15 = 0 \Leftrightarrow - 0,003{x^2} + 15 = 0 \Leftrightarrow x = 50\sqrt 2 \) (chọn).
Khi đó: \(H\left( 0 \right) = - 100\); \[H\left( {50\sqrt 2 } \right) = 500\sqrt 2 - 100\]; \(H\left( {100} \right) = 400\).
Vậy \(A\) bán cho \(B\) khoảng \(50\sqrt 2 \approx 70,7\) tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất bằng \[H\left( {50\sqrt 2 } \right) = 500\sqrt 2 - 100\].
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(y = - {x^3} + 3{x^2} - 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hàm số \[y = \frac{{ax + b}}{{cx - 1}}\] có đồ thị như hình vẽ bên dưới. Giá trị của tổng \[S = a + b + c\] bằng: A. \[S = 0.\] B. \[S = - 2.\] C. \[S = 2.\] D. \[S = 4.\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/5-1761390678.png)


