Câu hỏi:

25/10/2025 12 Lưu

Phần I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu chỉ chọn một phương án.

Một chất điểm chuyển động có phương trình \(S = {t^3} - 3{t^2} - 9t + 2\), trong đó t được tính bằng giây và S được tính bằng mét. Gia tốc tại thời điểm vận tốc bị triệt tiêu là:

A. \[ - 9{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].              
B. \[9{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].                      
C. \[ - 12{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].                       
D. \[12{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \(S = {t^3} - 3{t^2} - 9t + 2\).

\( \Rightarrow \left\{ \begin{array}{l}v = S' = 3{t^2} - 6t - 9\\a = S'' = 6t - 6\end{array} \right.\)

Khi vận tốc bị triệt tiêu tức \(v = 0 \Leftrightarrow 3{t^2} - 6t - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 1 < 0\\t = 3\left( {tm} \right)\end{array} \right.\).

Khi đó gia tốc tại thời điểm vận tốc bị triệt tiêu là \(a = 6.3 - 6 = 12\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số tiền thu về khi bán \(x\) mét vải lụa là: \(220x\).

Lợi nhuận thu được khi bán \(x\) mét vải lụa là:

\(L\left( x \right) = 220x - \left( {{x^3} - 3{x^2} - 20x + 500} \right) = - {x^3} + 3{x^2} + 240x - 500\).

Xét hàm số \(L\left( x \right) = - {x^3} + 3{x^2} + 240x - 500\) với \(x \in \left[ {1;18} \right]\)

\(L'\left( x \right) = - 3{x^2} + 6x + 240 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 10 \in [1;18]\\x = - 8 \notin [1;18]\end{array} \right.\)\(\)

Bảng biến thiên:

Một hộ làm nghề dệt vải lụa tơ tằm sản suất mỗi n (ảnh 1)

Vậy hộ làm nghề dệt này thu được lợi nhuận tối đa trong một ngày là \(1200\) nghìn đồng khi sản xuất \(10\) mét vải lụa trong một ngày.

Trả lời: 1200.

Câu 2

A. \[2,05{\rm{ }}{{\rm{m}}^{\rm{3}}}\].              
B. \[1,02{\rm{ }}{{\rm{m}}^{\rm{3}}}\].                   
C. \[1,45{\rm{ }}{{\rm{m}}^{\rm{3}}}\].                   
D. \[0,73{\rm{ }}{{\rm{m}}^3}\].

Lời giải

2,05\,{{\rm{m}}^{\rm{3}}}\). Chọn A. (ảnh 1)

Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,\,2x,\,y\,\left( {x,\,y > 0} \right)\).

Diện tích phần lắp kính là

\(2x.x + 2xy + 2.2x.y = 2{x^2} + 6xy = 8\, \Leftrightarrow \,xy = \frac{{8 - 2{x^2}}}{6} > 0\) \( \Rightarrow \,x < \sqrt {\frac{8}{2}} = \sqrt 4 = 2\).

Thể tích bể cá là: \(V = 2x.x.y = 2x.\frac{{8 - 2{x^2}}}{6} = \frac{{ - 4{x^3} + 16x}}{6}\) với \(0 < x < 2\).

Ta có: \(V' = \frac{{ - 12{x^2} + 16}}{6},\,V' = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{2}{{\sqrt 3 }}\\x = - \frac{2}{{\sqrt 3 }}\,\,\left( L \right)\end{array} \right.\)

2,05\,{{\rm{m}}^{\rm{3}}}\). Chọn A. (ảnh 2)

\( \Rightarrow \,{V_{\max }} = V\left( {\frac{2}{{\sqrt 3 }}} \right) \approx \,2,05\,{{\rm{m}}^{\rm{3}}}\). Chọn A.

Câu 5

A. Số lượng sản phẩm bán ra luôn tăng khi giá bán tăng.
B. Số lượng sản phẩm bán ra không đổi khi giá bán giảm.
C. Số lượng sản phẩm bán ra luôn giảm khi giá bán giảm.
D. Số lượng sản phẩm bán ra luôn giảm khi giá bán tăng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[89\left( {{\rm{m/s}}} \right).\]                        
B. \[71\left( {{\rm{m/s}}} \right).\]    
C. \[109\left( {{\rm{m/s}}} \right).\]                          
D. \[\frac{{25}}{3}\left( {{\rm{m/s}}} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP