Một vật chuyển động theo quy luật \[s = \frac{1}{3}{t^3} - {t^2} + 9t\], với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s (mét) là quãng đường đi được trong thời gian đó. Hỏi trong khoảng thời gian 10 giây kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Quảng cáo
Trả lời:
Vì \[s = \frac{1}{3}{t^3} - {t^2} + 9t \Rightarrow v = {t^2} - 2t + 9\].
Xét hàm \[f\left( t \right) = {t^2} - 2t + 9 \Rightarrow f'\left( t \right) = 2t - 2 = 0 \Rightarrow t = 1\].
Bảng biến thiên

Dựa vào bảng biến thiên ta thấy: \[\mathop {\max }\limits_{\left[ {0;10} \right]} f\left( t \right) = f\left( {10} \right) = 89\].
Vậy vận tốc của vật đạt được lớn nhất bằng \[89\left( {{\rm{m/s}}} \right).\] Chọn A.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số tiền thu về khi bán \(x\) mét vải lụa là: \(220x\).
Lợi nhuận thu được khi bán \(x\) mét vải lụa là:
\(L\left( x \right) = 220x - \left( {{x^3} - 3{x^2} - 20x + 500} \right) = - {x^3} + 3{x^2} + 240x - 500\).
Xét hàm số \(L\left( x \right) = - {x^3} + 3{x^2} + 240x - 500\) với \(x \in \left[ {1;18} \right]\)
\(L'\left( x \right) = - 3{x^2} + 6x + 240 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 10 \in [1;18]\\x = - 8 \notin [1;18]\end{array} \right.\)\(\)
Bảng biến thiên:

Vậy hộ làm nghề dệt này thu được lợi nhuận tối đa trong một ngày là \(1200\) nghìn đồng khi sản xuất \(10\) mét vải lụa trong một ngày.
Trả lời: 1200.
Câu 2
Lời giải

Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,\,2x,\,y\,\left( {x,\,y > 0} \right)\).
Diện tích phần lắp kính là
\(2x.x + 2xy + 2.2x.y = 2{x^2} + 6xy = 8\, \Leftrightarrow \,xy = \frac{{8 - 2{x^2}}}{6} > 0\) \( \Rightarrow \,x < \sqrt {\frac{8}{2}} = \sqrt 4 = 2\).
Thể tích bể cá là: \(V = 2x.x.y = 2x.\frac{{8 - 2{x^2}}}{6} = \frac{{ - 4{x^3} + 16x}}{6}\) với \(0 < x < 2\).
Ta có: \(V' = \frac{{ - 12{x^2} + 16}}{6},\,V' = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{2}{{\sqrt 3 }}\\x = - \frac{2}{{\sqrt 3 }}\,\,\left( L \right)\end{array} \right.\)

\( \Rightarrow \,{V_{\max }} = V\left( {\frac{2}{{\sqrt 3 }}} \right) \approx \,2,05\,{{\rm{m}}^{\rm{3}}}\). Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.