Câu hỏi:

26/10/2025 63 Lưu

Một vật chuyển động theo quy luật \[s = \frac{1}{3}{t^3} - {t^2} + 9t\], với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s (mét) là quãng đường đi được trong thời gian đó. Hỏi trong khoảng thời gian 10 giây kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?

A. \[89\left( {{\rm{m/s}}} \right).\]                        
B. \[71\left( {{\rm{m/s}}} \right).\]    
C. \[109\left( {{\rm{m/s}}} \right).\]                          
D. \[\frac{{25}}{3}\left( {{\rm{m/s}}} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\[s = \frac{1}{3}{t^3} - {t^2} + 9t \Rightarrow v = {t^2} - 2t + 9\].

Xét hàm \[f\left( t \right) = {t^2} - 2t + 9 \Rightarrow f'\left( t \right) = 2t - 2 = 0 \Rightarrow t = 1\].

Bảng biến thiên

Vậy vận tốc của vật đạt được lớn nhất b (ảnh 1)

Dựa vào bảng biến thiên ta thấy: \[\mathop {\max }\limits_{\left[ {0;10} \right]} f\left( t \right) = f\left( {10} \right) = 89\].

Vậy vận tốc của vật đạt được lớn nhất bằng \[89\left( {{\rm{m/s}}} \right).\] Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Dựa vào đồ thị hàm số ta thấy:

\(\mathop {\max }\limits_{\left[ { - 2;2} \right]} y = - 1\); \(\mathop {\min }\limits_{\left[ {0; + \infty } \right)} y = - 5\).

Không tồn tại giá trị nhỏ nhất của hàm số trên \(\left( { - \infty ;1} \right]\).

\(\mathop {\min }\limits_{\left[ { - 1;2} \right]} y = y\left( 1 \right) = - 5\).

Đáp án: a) Đúng;   b) Đúng; c) Sai; d) Đúng

Lời giải

Gọi hai kích thước của hình chữ nhật là \(x\)\(y\), với \(2x + y = 240\) \(\left( {0 < x < 120;0 < y < 240} \right)\).

Suy ra \(y = 240 - 2x\).

Diện tích của mảnh vườn hình chữ nhật là:

\(S = xy = x\left( {240 - 2x} \right) = 240x - 2{x^2},0 < x < 120\).

\(S' = 240 - 4x\); \(S' = 0 \Leftrightarrow x = 60 \in \left( {0;120} \right)\)

Bảng biến thiên

Một ông nông dân có 240 m hàng rào và muốn rào lại cánh đồng hình chữ nhật tiếp giáp với một con sông. Ông không cần rào cho phía giáp bờ sông. Hỏi ông có thể rào được cánh đồng với diện tích lớn nhất là bao nhiêu? (ảnh 1)

Từ bảng biến thiên ta thấy \(\mathop {\max }\limits_{\left( {0;120} \right)} S = 7200 \Leftrightarrow x = 60\).

Trả lời: 7200.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\mathop {\min }\limits_\mathbb{R} f\left( x \right) = - \frac{{{e^5}}}{2}\].                                                 
B. \[\mathop {\min }\limits_\mathbb{R} f\left( x \right) = \frac{{{e^5}}}{2}\].                 
C. \[\mathop {\min }\limits_\mathbb{R} f\left( x \right) = {e^5}\].                                                                    
D. Không tồn tại.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP