Câu hỏi:

26/10/2025 39 Lưu

Bảng dưới đây thống kê số giờ tự học ở nhà của 21 học sinh lớp 12 được hỏi ngẫu nhiên tại một trường THPT của Thành phố Hà Nội.

Nhóm (Số giờ tự học)

Tần số

[0;2)

6

[2;4)

3

[4;6)

7

[6;8)

5

 

21

Khi đó phương sai của mẫu số liệu ghép nhóm trên là

A. \(5,19\).                       
B. \(5,29\).                       
C. \(5,91\).                            
D. \(2,28\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có:

Nhóm( Số giờ tự học)

Giá trị đại diện

Tần số

[0;2)

1

6

[2;4)

3

3

[4;6)

5

7

[6;8)

7

5

 

 

21

Số trung bình của mẫu số liệu ghép nhóm là:

\[\overline x = \frac{{6.1 + 3.3 + 7.5 + 5.7}}{{21}} \approx 4,05\].

Phương sai của mẫu số liệu là:

\({S^2} = \frac{1}{{21}}\left[ {6.{{\left( {1 - 4,05} \right)}^2} + 3.{{\left( {3 - 4,05} \right)}^2} + 7.{{\left( {5 - 4,05} \right)}^2} + 5.{{\left( {7 - 4,05} \right)}^2}} \right] \approx 5,19\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(y' = 6{x^2} - 6x - 6m\).

Hàm số nghịch biến trên khoảng \(\left( { - 1;\,1} \right)\) khi và chỉ khi \(y' \le 0\) với \(\forall x \in \left( { - 1;\,1} \right)\) hay \(m \ge {x^2} - x\) với \(\forall x \in \left( { - 1;\,1} \right)\).

Xét \(f\left( x \right) = {x^2} - x\) trên khoảng \(\left( { - 1;\,1} \right)\) ta có \(f'\left( x \right) = 2x - 1\); \(f'\left( x \right) = 0 \Leftrightarrow x = \frac{1}{2}\).

Bảng biến thiên

Tìm tất cả các giá thực của tham số \(m\) sao cho hàm số \(y = 2{x^3} - 3{x^2} - 6mx + m\) nghịch biến trên khoảng \(\left( { - 1;\,1} \right)\). (ảnh 1)

Dựa vào bảng biến thiên ta có \(m \ge f\left( x \right)\)với \[\forall x \in \left( { - 1;\,1} \right)\]\( \Leftrightarrow m \ge 2\).

Lời giải

a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \[R = 120 - 70 = 50.\]

b) Số phần tử của mẫu là \[n = 30\].

Lớp khối lượng (gam)

Giá trị đại diện

Tần số

Tần số tích lũy

\[\left[ {70;80} \right)\]

\[75\]

\[3\]

3

\[\left[ {80;90} \right)\]

\[85\]

\[6\]

9

\[\left[ {90;100} \right)\]

\[95\]

\[12\]

21

\[\left[ {100;110} \right)\]

\[105\]

\[6\]

27

\[\left[ {110;120} \right)\]

\[115\]

\[3\]

30

 

 

\[n = 30\]

 

 

\(\frac{n}{4} = 7,5\). Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 7,5 nên nhóm này chứa tứ phân vị thứ nhất.

Áp dụng công thức, ta có tứ phân vị thứ nhất là: \[{Q_1} = 80 + \left( {\frac{{7,5 - 3}}{6}} \right).10 = 87,5\left( {{\rm{gam}}} \right)\].

\(\frac{{3n}}{4} = 22,5\). Nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 22,5 nên nhóm này chứa tứ phân vị thứ ba.

Áp dụng công thức, ta có tứ phân vị thứ ba là: \[{Q_3} = 100 + \left( {\frac{{22,5 - 21}}{6}} \right).10 = 102,5\left( {{\rm{gam}}} \right)\].

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \[\Delta Q = {Q_3} - {Q_1} = 102,5 - 87,5 = 15\].

c) Số trung bình cộng của mẫu số liệu ghép nhóm

\[\overline x = \frac{{3.75 + 6.85 + 12.95 + 6.105 + 3.115}}{{30}} = 95\left( {{\rm{gam}}} \right)\].

d) Phương sai của mẫu số liệu ghép nhóm là:

\[{s^2} = \frac{1}{{30}}\left[ {3.{{\left( {75 - 95} \right)}^2} + 6.{{\left( {85 - 95} \right)}^2} + 12.{{\left( {95 - 95} \right)}^2} + 6.{{\left( {105 - 95} \right)}^2} + 3.{{\left( {115 - 95} \right)}^2}} \right] = 120\].

Đáp án: a) Đúng;    b) Sai;   c) Sai;   c) Đúng.

Câu 3

A. \(s = 161,4\).               

B. \(s = 14,48\).                                                            
C. \(s = 8,2\).                   
D. \(s = 3,85\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP