Khối lượng của 30 củ khoai tây được thu hoạch ở một nông trại được thống kê như bảng sau:
Giá trị đại diện
Tần số
\[\left[ {70;80} \right)\]
\[75\]
\[3\]
\[\left[ {80;90} \right)\]
\[85\]
\[6\]
\[\left[ {90;100} \right)\]
\[95\]
\[12\]
\[\left[ {100;110} \right)\]
\[105\]
\[6\]
\[\left[ {110;120} \right)\]
\[115\]
\[3\]
\[n = 30\]
a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là \[50\].
b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là \[10\].
c) Số trung bình cộng của mẫu số liệu ghép nhóm trên là \[90\].
d) Phương sai của mẫu số liệu ghép nhóm trên là \[120\].
Khối lượng của 30 củ khoai tây được thu hoạch ở một nông trại được thống kê như bảng sau:
|
Giá trị đại diện |
Tần số |
|
|
\[\left[ {70;80} \right)\] |
\[75\] |
\[3\] |
|
\[\left[ {80;90} \right)\] |
\[85\] |
\[6\] |
|
\[\left[ {90;100} \right)\] |
\[95\] |
\[12\] |
|
\[\left[ {100;110} \right)\] |
\[105\] |
\[6\] |
|
\[\left[ {110;120} \right)\] |
\[115\] |
\[3\] |
|
|
|
\[n = 30\] |
a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là \[50\].
b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là \[10\].
c) Số trung bình cộng của mẫu số liệu ghép nhóm trên là \[90\].
d) Phương sai của mẫu số liệu ghép nhóm trên là \[120\].
Quảng cáo
Trả lời:
a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \[R = 120 - 70 = 50.\]
b) Số phần tử của mẫu là \[n = 30\].
|
Lớp khối lượng (gam) |
Giá trị đại diện |
Tần số |
Tần số tích lũy |
|
\[\left[ {70;80} \right)\] |
\[75\] |
\[3\] |
3 |
|
\[\left[ {80;90} \right)\] |
\[85\] |
\[6\] |
9 |
|
\[\left[ {90;100} \right)\] |
\[95\] |
\[12\] |
21 |
|
\[\left[ {100;110} \right)\] |
\[105\] |
\[6\] |
27 |
|
\[\left[ {110;120} \right)\] |
\[115\] |
\[3\] |
30 |
|
|
|
\[n = 30\] |
|
Có \(\frac{n}{4} = 7,5\). Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 7,5 nên nhóm này chứa tứ phân vị thứ nhất.
Áp dụng công thức, ta có tứ phân vị thứ nhất là: \[{Q_1} = 80 + \left( {\frac{{7,5 - 3}}{6}} \right).10 = 87,5\left( {{\rm{gam}}} \right)\].
Có \(\frac{{3n}}{4} = 22,5\). Nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 22,5 nên nhóm này chứa tứ phân vị thứ ba.
Áp dụng công thức, ta có tứ phân vị thứ ba là: \[{Q_3} = 100 + \left( {\frac{{22,5 - 21}}{6}} \right).10 = 102,5\left( {{\rm{gam}}} \right)\].
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \[\Delta Q = {Q_3} - {Q_1} = 102,5 - 87,5 = 15\].
c) Số trung bình cộng của mẫu số liệu ghép nhóm
\[\overline x = \frac{{3.75 + 6.85 + 12.95 + 6.105 + 3.115}}{{30}} = 95\left( {{\rm{gam}}} \right)\].
d) Phương sai của mẫu số liệu ghép nhóm là:
\[{s^2} = \frac{1}{{30}}\left[ {3.{{\left( {75 - 95} \right)}^2} + 6.{{\left( {85 - 95} \right)}^2} + 12.{{\left( {95 - 95} \right)}^2} + 6.{{\left( {105 - 95} \right)}^2} + 3.{{\left( {115 - 95} \right)}^2}} \right] = 120\].
Đáp án: a) Đúng; b) Sai; c) Sai; c) Đúng.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ biểu đồ, ta có bảng thống kê sau:
|
Thời gian (giờ) |
[7,2; 7,4) |
[7,4; 7,6) |
[7,6; 7,8) |
[7,8; 8,0) |
|
Giá trị đại diện |
7,3 |
7,5 |
7,7 |
7,9 |
|
Số máy vi tính |
2 |
4 |
7 |
5 |
Cỡ mẫu là \[n = 2 + 4 + 7 + 5 = 18.\]
Số trung bình của mẫu số liệu ghép nhóm là:
\[\overline x = \frac{{2.7,3 + 4.7,5 + 7.7,7 + 5.7,9}}{{18}} = \frac{{23}}{3}\].
Phương sai của mẫu số liệu ghép nhóm là:
\[{S^2} = \frac{1}{{18}}\left[ {2.{{\left( {7,3 - \frac{{23}}{3}} \right)}^2} + 4.{{\left( {7,5 - \frac{{23}}{3}} \right)}^2} + 7.{{\left( {7,7 - \frac{{23}}{3}} \right)}^2} + 5.{{\left( {7,9 - \frac{{23}}{3}} \right)}^2}} \right] \approx 0,04.\]
Trả lời: 0,04.
Lời giải
|
Nhóm |
Giá trị đại diện |
Tần số |
|
\[\left[ {30;40} \right)\] |
\[35\] |
\[2\] |
|
\[\left[ {40;50} \right)\] |
\[45\] |
\[10\] |
|
\[\left[ {50;60} \right)\] |
\[55\] |
\[16\] |
|
\[\left[ {60;70} \right)\] |
\[65\] |
\[8\] |
|
\[\left[ {70;80} \right)\] |
\[75\] |
\[2\] |
|
\[\left[ {80;90} \right)\] |
\[85\] |
\[2\] |
|
|
|
\[n = 40\] |
Số trung bình cộng của mẫu số liệu ghép nhóm là:
\[\overline x \, = \frac{{35.2 + 45.10 + 55.16 + 65.8 + 75.2 + 85.2}}{{40}} = 56\].
Độ lệch chuẩn của mẫu số liệu ghép nhóm là:
\[\begin{array}{l}s\, = \sqrt {\frac{1}{{40}}\left[ {2.{{\left( {35 - 56} \right)}^2} + 10.{{\left( {45 - 56} \right)}^2} + 16.{{\left( {55 - 56} \right)}^2} + 8.{{\left( {65 - 56} \right)}^2} + 2.{{\left( {75 - 56} \right)}^2} + 2.{{\left( {85 - 56} \right)}^2}} \right]} \\ \approx 11,4.\end{array}\]
Trả lời: 11,4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(s = 161,4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Đo chiều cao (tính bằng \[{\rm{cm}}\]) của \[500\] học sinh trong một trường THPT ta thu được kết quả như sau: Độ lệch chuẩn của mẫu số liệu trên là: A. \(s = 161,4\). B. \(s = 14,48\). C. \(s = 8,2\). D. \(s = 3,85\) (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/10-1761395174.png)