Phần III. Trắc nghiệm trả lời ngắn
Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số máy vi tính cùng loại được mô tả bằng biểu đồ bên.

Xác định phương sai của thời gian sử dụng pin (làm tròn đến hàng phần trăm).
Phần III. Trắc nghiệm trả lời ngắn
Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số máy vi tính cùng loại được mô tả bằng biểu đồ bên.

Xác định phương sai của thời gian sử dụng pin (làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:
Từ biểu đồ, ta có bảng thống kê sau:
|
Thời gian (giờ) |
[7,2; 7,4) |
[7,4; 7,6) |
[7,6; 7,8) |
[7,8; 8,0) |
|
Giá trị đại diện |
7,3 |
7,5 |
7,7 |
7,9 |
|
Số máy vi tính |
2 |
4 |
7 |
5 |
Cỡ mẫu là \[n = 2 + 4 + 7 + 5 = 18.\]
Số trung bình của mẫu số liệu ghép nhóm là:
\[\overline x = \frac{{2.7,3 + 4.7,5 + 7.7,7 + 5.7,9}}{{18}} = \frac{{23}}{3}\].
Phương sai của mẫu số liệu ghép nhóm là:
\[{S^2} = \frac{1}{{18}}\left[ {2.{{\left( {7,3 - \frac{{23}}{3}} \right)}^2} + 4.{{\left( {7,5 - \frac{{23}}{3}} \right)}^2} + 7.{{\left( {7,7 - \frac{{23}}{3}} \right)}^2} + 5.{{\left( {7,9 - \frac{{23}}{3}} \right)}^2}} \right] \approx 0,04.\]
Trả lời: 0,04.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \[R = 120 - 70 = 50.\]
b) Số phần tử của mẫu là \[n = 30\].
|
Lớp khối lượng (gam) |
Giá trị đại diện |
Tần số |
Tần số tích lũy |
|
\[\left[ {70;80} \right)\] |
\[75\] |
\[3\] |
3 |
|
\[\left[ {80;90} \right)\] |
\[85\] |
\[6\] |
9 |
|
\[\left[ {90;100} \right)\] |
\[95\] |
\[12\] |
21 |
|
\[\left[ {100;110} \right)\] |
\[105\] |
\[6\] |
27 |
|
\[\left[ {110;120} \right)\] |
\[115\] |
\[3\] |
30 |
|
|
|
\[n = 30\] |
|
Có \(\frac{n}{4} = 7,5\). Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 7,5 nên nhóm này chứa tứ phân vị thứ nhất.
Áp dụng công thức, ta có tứ phân vị thứ nhất là: \[{Q_1} = 80 + \left( {\frac{{7,5 - 3}}{6}} \right).10 = 87,5\left( {{\rm{gam}}} \right)\].
Có \(\frac{{3n}}{4} = 22,5\). Nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 22,5 nên nhóm này chứa tứ phân vị thứ ba.
Áp dụng công thức, ta có tứ phân vị thứ ba là: \[{Q_3} = 100 + \left( {\frac{{22,5 - 21}}{6}} \right).10 = 102,5\left( {{\rm{gam}}} \right)\].
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \[\Delta Q = {Q_3} - {Q_1} = 102,5 - 87,5 = 15\].
c) Số trung bình cộng của mẫu số liệu ghép nhóm
\[\overline x = \frac{{3.75 + 6.85 + 12.95 + 6.105 + 3.115}}{{30}} = 95\left( {{\rm{gam}}} \right)\].
d) Phương sai của mẫu số liệu ghép nhóm là:
\[{s^2} = \frac{1}{{30}}\left[ {3.{{\left( {75 - 95} \right)}^2} + 6.{{\left( {85 - 95} \right)}^2} + 12.{{\left( {95 - 95} \right)}^2} + 6.{{\left( {105 - 95} \right)}^2} + 3.{{\left( {115 - 95} \right)}^2}} \right] = 120\].
Đáp án: a) Đúng; b) Sai; c) Sai; c) Đúng.
Lời giải
Giá trị đại diệm của mỗi nhóm như sau:

Tổng số học sinh là: 40.
Vậy giá trị trung bình là
\(\overline x = \frac{{4.18,5 + 6.23,5 + 8.28,5 + 18.33,5 + 4.38,5}}{{40}} = 30\).
Trả lời: 30.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
