Câu hỏi:

26/10/2025 10 Lưu

Phần III. Trắc nghiệm trả lời ngắn

Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số máy vi tính cùng loại được mô tả bằng biểu đồ bên.

Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số máy vi tính cùng loại được mô tả bằng biểu đồ bên. Xác định phương sai của thời gian sử dụng pin (làm tròn đến hàng phần trăm). (ảnh 1)

Xác định phương sai của thời gian sử dụng pin (làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ biểu đồ, ta có bảng thống kê sau:

Thời gian (giờ)

[7,2; 7,4)

[7,4; 7,6)

[7,6; 7,8)

[7,8; 8,0)

Giá trị đại diện

7,3

7,5

7,7

7,9

Số máy vi tính

2

4

7

5

Cỡ mẫu là \[n = 2 + 4 + 7 + 5 = 18.\]

Số trung bình của mẫu số liệu ghép nhóm là:

\[\overline x = \frac{{2.7,3 + 4.7,5 + 7.7,7 + 5.7,9}}{{18}} = \frac{{23}}{3}\].

Phương sai của mẫu số liệu ghép nhóm là:

\[{S^2} = \frac{1}{{18}}\left[ {2.{{\left( {7,3 - \frac{{23}}{3}} \right)}^2} + 4.{{\left( {7,5 - \frac{{23}}{3}} \right)}^2} + 7.{{\left( {7,7 - \frac{{23}}{3}} \right)}^2} + 5.{{\left( {7,9 - \frac{{23}}{3}} \right)}^2}} \right] \approx 0,04.\]

Trả lời: 0,04.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Nhóm

Giá trị đại diện

Tần số

\[\left[ {30;40} \right)\]

\[35\]

\[2\]

\[\left[ {40;50} \right)\]

\[45\]

\[10\]

\[\left[ {50;60} \right)\]

\[55\]

\[16\]

\[\left[ {60;70} \right)\]

\[65\]

\[8\]

\[\left[ {70;80} \right)\]

\[75\]

\[2\]

\[\left[ {80;90} \right)\]

\[85\]

\[2\]

 

 

\[n = 40\]

 

Số trung bình cộng của mẫu số liệu ghép nhóm là:

\[\overline x \, = \frac{{35.2 + 45.10 + 55.16 + 65.8 + 75.2 + 85.2}}{{40}} = 56\].

Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

\[\begin{array}{l}s\, = \sqrt {\frac{1}{{40}}\left[ {2.{{\left( {35 - 56} \right)}^2} + 10.{{\left( {45 - 56} \right)}^2} + 16.{{\left( {55 - 56} \right)}^2} + 8.{{\left( {65 - 56} \right)}^2} + 2.{{\left( {75 - 56} \right)}^2} + 2.{{\left( {85 - 56} \right)}^2}} \right]} \\ \approx 11,4.\end{array}\]

Trả lời: 11,4.

Lời giải

Tập xác định: \(D = \mathbb{R}\).

\(y' = 3{x^2} - 6x\), \(y' = 0 \Leftrightarrow 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\).

Do đó đồ thị hàm số đã cho luôn có hai điểm cực trị lần lượt có tọa độ là \(A\left( {0;m} \right)\)\(B\left( {2; - 4 + m} \right)\).

Ta có \(OA = OB \Leftrightarrow \sqrt {{0^2} + {m^2}} = \sqrt {{2^2} + {{\left( {4 - m} \right)}^2}} \Leftrightarrow {m^2} = 4 + {\left( {4 - m} \right)^2}\)\( \Leftrightarrow 20 - 8m = 0 \Leftrightarrow m = \frac{5}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(s = 161,4\).               

B. \(s = 14,48\).                                                            
C. \(s = 8,2\).                   
D. \(s = 3,85\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP