Đề cương ôn tập cuối kì 1 Toán 12 Chân trời sáng tạo (có tự luận) có đáp án - Bài 2. Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm
34 người thi tuần này 4.6 357 lượt thi 12 câu hỏi 45 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
210 câu Bài tập Tích phân cực hay có lời giải (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
|
Lớp |
Giá trị đại diện |
Tần số |
|
[15;20) |
17,5 |
10 |
|
[20;25) |
22,5 |
12 |
|
[25;30) |
27,5 |
14 |
|
[30;35) |
32,5 |
9 |
|
[35;40) |
37,5 |
5 |
|
|
|
N = 50 |
Giá trị trung bình
\(\overline x = \frac{{17,5.10 + 22,5.12 + 27,5.14 + 32,5.9 + 37,5.5}}{{50}} = 26,2\). Chọn A.
Câu 2
Lời giải
Ta có:
|
Nhóm( Số giờ tự học) |
Giá trị đại diện |
Tần số |
|
[0;2) |
1 |
6 |
|
[2;4) |
3 |
3 |
|
[4;6) |
5 |
7 |
|
[6;8) |
7 |
5 |
|
|
|
21 |
Số trung bình của mẫu số liệu ghép nhóm là:
\[\overline x = \frac{{6.1 + 3.3 + 7.5 + 5.7}}{{21}} \approx 4,05\].
Phương sai của mẫu số liệu là:
\({S^2} = \frac{1}{{21}}\left[ {6.{{\left( {1 - 4,05} \right)}^2} + 3.{{\left( {3 - 4,05} \right)}^2} + 7.{{\left( {5 - 4,05} \right)}^2} + 5.{{\left( {7 - 4,05} \right)}^2}} \right] \approx 5,19\). Chọn A.
Câu 3
A. \(s = 161,4\).
Lời giải
Ta có bảng sau
![Đo chiều cao (tính bằng \[{\rm{cm}}\]) của \[500\] học sinh trong một trường THPT ta thu được kết quả như sau: Độ lệch chuẩn của mẫu số liệu trên là: A. \(s = 161,4\). B. \(s = 14,48\). C. \(s = 8,2\). D. \(s = 3,85\) (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/10/10-1761395150.png)
Ta có chiều cao trung bình:
\[\overline x = \frac{1}{{500}}\left( {152.25 + 156.50 + 160.200 + 164.175 + 168.50} \right) = 161,4\].
Phương sai của mẫu số liệu:
\[{s^2} = \frac{1}{{500}}\left[ \begin{array}{l}25{\left( {152 - 161,4} \right)^2} + 50{\left( {156 - 161,4} \right)^2} + 200{\left( {160 - 161,4} \right)^2}\\ + 175{\left( {164 - 161,4} \right)^2} + 50{\left( {168 - 161,4} \right)^2}\end{array} \right] = 14,84\]
\( \Rightarrow \) Độ lệch chuẩn: \[s = \sqrt {{s^2}} = \sqrt {14,48} \approx 3,85\]. Chọn D.
Lời giải
Ta có bảng sau:
|
Nhóm |
Giá trị đại diện |
Tần số |
|
\(\left[ {30;40} \right)\) |
35 |
5 |
|
\(\left[ {40;50} \right)\) |
45 |
8 |
|
\(\left[ {50;60} \right)\) |
55 |
25 |
|
\(\left[ {60;70} \right)\) |
65 |
20 |
|
\(\left[ {70;80} \right)\) |
75 |
2 |
|
|
|
\(n = 60\) |
a) Số trung bình cộng của mẫu số liệu trên là:
\(\overline x = \frac{{35.5 + 45.8 + 55.25 + 65.20 + 75.2}}{{60}} = 56\)(nghìn đồng).
b) Khoảng biến thiên của mẫu số liệu trên là: \(80 - 30 = 50\)(nghìn đồng).
c) Nhóm chứa tứ phân vị thứ nhất là \(\left[ {50;60} \right)\).
Tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = 50 + \frac{{\frac{{60}}{4} - 13}}{{25}}.10 = 50,8\)(nghìn đồng).
Nhóm chứa tứ phân vị thứ ba là \(\left[ {60;70} \right)\).
Tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = 60 + \frac{{\frac{{3.60}}{4} - 38}}{{20}}.10 = 63,5\)(nghìn đồng).
Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 63,5 - 50,8 = 12,7\)(nghìn đồng).
d) Phương sai của mẫu số liệu trên là:
\({s^2} = \frac{{5{{\left( {35 - 56} \right)}^2} + 8{{\left( {45 - 56} \right)}^2} + 25{{\left( {55 - 56} \right)}^2} + 20{{\left( {65 - 56} \right)}^2} + 2{{\left( {75 - 56} \right)}^2}}}{{60}} = \frac{{277}}{3} \approx 92,3\)(nghìn đồng).
Đáp án: a) Đúng; b) Đúng; c) Đúng; c) Sai.
Lời giải
a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \[R = 120 - 70 = 50.\]
b) Số phần tử của mẫu là \[n = 30\].
|
Lớp khối lượng (gam) |
Giá trị đại diện |
Tần số |
Tần số tích lũy |
|
\[\left[ {70;80} \right)\] |
\[75\] |
\[3\] |
3 |
|
\[\left[ {80;90} \right)\] |
\[85\] |
\[6\] |
9 |
|
\[\left[ {90;100} \right)\] |
\[95\] |
\[12\] |
21 |
|
\[\left[ {100;110} \right)\] |
\[105\] |
\[6\] |
27 |
|
\[\left[ {110;120} \right)\] |
\[115\] |
\[3\] |
30 |
|
|
|
\[n = 30\] |
|
Có \(\frac{n}{4} = 7,5\). Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 7,5 nên nhóm này chứa tứ phân vị thứ nhất.
Áp dụng công thức, ta có tứ phân vị thứ nhất là: \[{Q_1} = 80 + \left( {\frac{{7,5 - 3}}{6}} \right).10 = 87,5\left( {{\rm{gam}}} \right)\].
Có \(\frac{{3n}}{4} = 22,5\). Nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 22,5 nên nhóm này chứa tứ phân vị thứ ba.
Áp dụng công thức, ta có tứ phân vị thứ ba là: \[{Q_3} = 100 + \left( {\frac{{22,5 - 21}}{6}} \right).10 = 102,5\left( {{\rm{gam}}} \right)\].
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \[\Delta Q = {Q_3} - {Q_1} = 102,5 - 87,5 = 15\].
c) Số trung bình cộng của mẫu số liệu ghép nhóm
\[\overline x = \frac{{3.75 + 6.85 + 12.95 + 6.105 + 3.115}}{{30}} = 95\left( {{\rm{gam}}} \right)\].
d) Phương sai của mẫu số liệu ghép nhóm là:
\[{s^2} = \frac{1}{{30}}\left[ {3.{{\left( {75 - 95} \right)}^2} + 6.{{\left( {85 - 95} \right)}^2} + 12.{{\left( {95 - 95} \right)}^2} + 6.{{\left( {105 - 95} \right)}^2} + 3.{{\left( {115 - 95} \right)}^2}} \right] = 120\].
Đáp án: a) Đúng; b) Sai; c) Sai; c) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Đo chiều cao (tính bằng \[{\rm{cm}}\]) của \[500\] học sinh trong một trường THPT ta thu được kết quả như sau: Độ lệch chuẩn của mẫu số liệu trên là: A. \(s = 161,4\). B. \(s = 14,48\). C. \(s = 8,2\). D. \(s = 3,85\) (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/10-1761395174.png)

