Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.
Bảng sau biểu diễn mẫu số liệu về số tiền (đơn vị: nghìn đồng) mà 60 khách hàng mua trà sữa ở một cửa hàng trong một buổi sáng.
Nhóm
\(\left[ {30;40} \right)\)
\(\left[ {40;50} \right)\)
\(\left[ {50;60} \right)\)
\(\left[ {60;70} \right)\)
\(\left[ {70;80} \right)\)
Số khách hàng
5
8
25
20
2
a) Số trung bình cộng của mẫu số liệu trên là 56 (nghìn đồng).
b) Khoảng biến thiên của mẫu số liệu trên là 50 (nghìn đồng).
c) Khoảng tứ phân vị của mẫu số liệu trên là 12,7 (nghìn đồng).
d) Phương sai của mẫu số liệu trên lớn hơn 93 (nghìn đồng).
Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.
Bảng sau biểu diễn mẫu số liệu về số tiền (đơn vị: nghìn đồng) mà 60 khách hàng mua trà sữa ở một cửa hàng trong một buổi sáng.
|
Nhóm |
\(\left[ {30;40} \right)\) |
\(\left[ {40;50} \right)\) |
\(\left[ {50;60} \right)\) |
\(\left[ {60;70} \right)\) |
\(\left[ {70;80} \right)\) |
|
Số khách hàng |
5 |
8 |
25 |
20 |
2 |
a) Số trung bình cộng của mẫu số liệu trên là 56 (nghìn đồng).
b) Khoảng biến thiên của mẫu số liệu trên là 50 (nghìn đồng).
c) Khoảng tứ phân vị của mẫu số liệu trên là 12,7 (nghìn đồng).
d) Phương sai của mẫu số liệu trên lớn hơn 93 (nghìn đồng).
Quảng cáo
Trả lời:
Ta có bảng sau:
|
Nhóm |
Giá trị đại diện |
Tần số |
|
\(\left[ {30;40} \right)\) |
35 |
5 |
|
\(\left[ {40;50} \right)\) |
45 |
8 |
|
\(\left[ {50;60} \right)\) |
55 |
25 |
|
\(\left[ {60;70} \right)\) |
65 |
20 |
|
\(\left[ {70;80} \right)\) |
75 |
2 |
|
|
|
\(n = 60\) |
a) Số trung bình cộng của mẫu số liệu trên là:
\(\overline x = \frac{{35.5 + 45.8 + 55.25 + 65.20 + 75.2}}{{60}} = 56\)(nghìn đồng).
b) Khoảng biến thiên của mẫu số liệu trên là: \(80 - 30 = 50\)(nghìn đồng).
c) Nhóm chứa tứ phân vị thứ nhất là \(\left[ {50;60} \right)\).
Tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = 50 + \frac{{\frac{{60}}{4} - 13}}{{25}}.10 = 50,8\)(nghìn đồng).
Nhóm chứa tứ phân vị thứ ba là \(\left[ {60;70} \right)\).
Tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = 60 + \frac{{\frac{{3.60}}{4} - 38}}{{20}}.10 = 63,5\)(nghìn đồng).
Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 63,5 - 50,8 = 12,7\)(nghìn đồng).
d) Phương sai của mẫu số liệu trên là:
\({s^2} = \frac{{5{{\left( {35 - 56} \right)}^2} + 8{{\left( {45 - 56} \right)}^2} + 25{{\left( {55 - 56} \right)}^2} + 20{{\left( {65 - 56} \right)}^2} + 2{{\left( {75 - 56} \right)}^2}}}{{60}} = \frac{{277}}{3} \approx 92,3\)(nghìn đồng).
Đáp án: a) Đúng; b) Đúng; c) Đúng; c) Sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \[R = 120 - 70 = 50.\]
b) Số phần tử của mẫu là \[n = 30\].
|
Lớp khối lượng (gam) |
Giá trị đại diện |
Tần số |
Tần số tích lũy |
|
\[\left[ {70;80} \right)\] |
\[75\] |
\[3\] |
3 |
|
\[\left[ {80;90} \right)\] |
\[85\] |
\[6\] |
9 |
|
\[\left[ {90;100} \right)\] |
\[95\] |
\[12\] |
21 |
|
\[\left[ {100;110} \right)\] |
\[105\] |
\[6\] |
27 |
|
\[\left[ {110;120} \right)\] |
\[115\] |
\[3\] |
30 |
|
|
|
\[n = 30\] |
|
Có \(\frac{n}{4} = 7,5\). Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 7,5 nên nhóm này chứa tứ phân vị thứ nhất.
Áp dụng công thức, ta có tứ phân vị thứ nhất là: \[{Q_1} = 80 + \left( {\frac{{7,5 - 3}}{6}} \right).10 = 87,5\left( {{\rm{gam}}} \right)\].
Có \(\frac{{3n}}{4} = 22,5\). Nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 22,5 nên nhóm này chứa tứ phân vị thứ ba.
Áp dụng công thức, ta có tứ phân vị thứ ba là: \[{Q_3} = 100 + \left( {\frac{{22,5 - 21}}{6}} \right).10 = 102,5\left( {{\rm{gam}}} \right)\].
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \[\Delta Q = {Q_3} - {Q_1} = 102,5 - 87,5 = 15\].
c) Số trung bình cộng của mẫu số liệu ghép nhóm
\[\overline x = \frac{{3.75 + 6.85 + 12.95 + 6.105 + 3.115}}{{30}} = 95\left( {{\rm{gam}}} \right)\].
d) Phương sai của mẫu số liệu ghép nhóm là:
\[{s^2} = \frac{1}{{30}}\left[ {3.{{\left( {75 - 95} \right)}^2} + 6.{{\left( {85 - 95} \right)}^2} + 12.{{\left( {95 - 95} \right)}^2} + 6.{{\left( {105 - 95} \right)}^2} + 3.{{\left( {115 - 95} \right)}^2}} \right] = 120\].
Đáp án: a) Đúng; b) Sai; c) Sai; c) Đúng.
Lời giải
Giá trị đại diệm của mỗi nhóm như sau:

Tổng số học sinh là: 40.
Vậy giá trị trung bình là
\(\overline x = \frac{{4.18,5 + 6.23,5 + 8.28,5 + 18.33,5 + 4.38,5}}{{40}} = 30\).
Trả lời: 30.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

