Đề cương ôn tập cuối kì 1 Toán 12 Chân trời sáng tạo cấu trúc mới (có tự luận) có đáp án - Bài 3. Đường tiệm cận của đồ thị hàm số
34 người thi tuần này 4.6 709 lượt thi 12 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 9
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 3
Danh sách câu hỏi:
Lời giải
Dựa vào đồ thị của hàm số \(y = f\left( x \right)\) ta có:
\(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 1\) nên đường thẳng \(y = 1\) là một đường tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\).
\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 3\) nên đường thẳng \(y = 3\) là một đường tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\).
\(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = + \infty \) và \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = + \infty \) suy ra đường thẳng \(x = 0\) là tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\).
Vậy đồ thị hàm số \(y = f\left( x \right)\) có tất cả 3 đường tiệm cận. Chọn B.
Lời giải
Nhìn bảng biến thiên ta thấy \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \infty \) nên đường thẳng \(x = 0\)là tiệm cận đứng của đồ thị hàm số.
\[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 3 \Rightarrow y = 3\] là tiệm cận ngang của đồ thị hàm số.
\[\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 1 \Rightarrow y = 1\]là tiệm cận ngang của đồ thị hàm số.
Vậy đồ thị hàm số có 3 tiệm cận. Chọn B.
Câu 3
Lời giải
Ta có:\(\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{3x + 2}}{{x - 2}} = + \infty ,\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{3x + 2}}{{x - 2}} = - \infty .\)
Do đó tiệm cận đứng của đồ thị hàm số \(y = \frac{{3x + 2}}{{x - 2}}\) là đường thẳng có phương trình \(x = 2\). Chọn A.
Câu 4
Lời giải
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{x - 2}}{{x + 1}} = 1\) và \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x - 2}}{{x + 1}} = 1\)
Suy ra \(y = 1\) là tiệm cận ngang của đồ thị hàm số. Chọn B.
Câu 5
Lời giải
Ta có \(y = \frac{{{x^2} + x - 3}}{{x - 1}} = x + 2 - \frac{1}{{x - 1}}\).
\[\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 2} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( { - \frac{1}{{x - 1}}} \right) = 0,\,\,\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x + 2} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left( { - \frac{1}{{x - 1}}} \right) = 0\].
Vậy tiệm cận xiên của đồ thị hàm số là: \(y = x + 2\). Chọn B.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


