Cho hai biến cố A, B với \(P\left( A \right) = 0,4;P\left( B \right) = 0,6;P\left( {AB} \right) = 0,2\). Khi đó xác suất \(P\left( {\overline A |B} \right) = \frac{a}{b}\) với \(a,b \in \mathbb{Z}\) và \(\frac{a}{b}\) là phân số tối giản. Tính \(M = {a^2} + {b^2}\).
Cho hai biến cố A, B với \(P\left( A \right) = 0,4;P\left( B \right) = 0,6;P\left( {AB} \right) = 0,2\). Khi đó xác suất \(P\left( {\overline A |B} \right) = \frac{a}{b}\) với \(a,b \in \mathbb{Z}\) và \(\frac{a}{b}\) là phân số tối giản. Tính \(M = {a^2} + {b^2}\).
Quảng cáo
Trả lời:
Ta có \(P\left( {\overline A B} \right) = P\left( B \right) - P\left( {AB} \right) = 0,6 - 0,2 = 0,4\).
Ta có \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A B} \right)}}{{P\left( B \right)}} = \frac{{0,4}}{{0,6}} = \frac{2}{3}\).
Suy ra \(a = 2;b = 3\). Do đó \(M = {a^2} + {b^2} = 13\).
Trả lời: 13.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(P\left( {AB} \right) = P\left( A \right).P\left( {B|A} \right) = \frac{8}{{14}}.\frac{7}{{13}} = \frac{4}{{13}} \approx 0,3\).
Trả lời: 0,3.
Lời giải
Gọi A là biến cố “Học sinh học khá môn Hóa học”;
B là biến cố “Học sinh học khá môn Toán”.
Có \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{12}}{{25}} = 0,48\).
Trả lời: 0,48.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.