Câu hỏi:

26/10/2025 37 Lưu

Một bệnh viên có hai phòng khám là phòng A và phòng B với khả năng lựa chọn của bệnh nhân là như nhau. Tỉ lệ bệnh nhân nam có ở phòng A và phòng B lần lượt là 60% và 40%. Một người bệnh được chọn ngẫu nhiên từ hai phòng khám. Tính xác suất để người bệnh được chọn là nam.

A. 0,6.                          
B. 0,5.                          
C. 0,4.                              
D. 0,3.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Gọi A là biến cố “Bệnh nhân được chọn ở phòng A”; B là biến cố “Bệnh nhân được chọn là nam”.

Ta có \(P\left( A \right) = P\left( {\overline A } \right) = \frac{1}{2};P\left( {B|A} \right) = 0,6;P\left( {B|\overline A } \right) = 0,4\).

Khi đó \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = \frac{1}{2}.0,6 + \frac{1}{2}.0,4 = 0,5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi A là biến cố “Bệnh nhân đó hồi phục sau đột quỵ”;

B là biến cố “Bệnh nhân đó được điều trị trong 6 giờ đầu”.

Theo đề ta có \(P\left( A \right) = 0,35;P\left( B \right) = 0,4;P\left( {AB} \right) = 0,3\).

a) \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,3}}{{0,35}} \approx 0,86\).

b) \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A B} \right)}}{{P\left( B \right)}} = \frac{{P\left( B \right) - P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,4 - 0,3}}{{0,4}} = \frac{1}{4}\).

c) \(P\left( {A|\overline B } \right) = \frac{{P\left( {A\overline B } \right)}}{{P\left( {\overline B } \right)}} = \frac{{P\left( A \right) - P\left( {AB} \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,35 - 0,3}}{{0,6}} = \frac{1}{{12}}\).

d) Có \(\frac{{P\left( {A|B} \right)}}{{P\left( {A|\overline B } \right)}} = \frac{{P\left( {AB} \right)}}{{P\left( B \right).P\left( {A|\overline B } \right)}} = \frac{{0,3}}{{0,4.\frac{1}{{12}}}} = 9\).

Đáp án: a) Sai;   b) Sai;   c) Sai;   d) Sai.

Câu 2

A. 10%.                       
B. 77%.                       
C. 90%.                                   
D. 50%.

Lời giải

Chọn B

Gọi A là biến cố “Người đó thực sự bị mắc bệnh”; B là biến cố “người đó có kết quả xét nghiệm dương tính”.

Theo đề ta có \(P\left( A \right) = \frac{{120}}{{1000}} = \frac{3}{{25}}\); \(P\left( B \right) = \frac{{130}}{{1000}} = \frac{{13}}{{100}}\); \(P\left( {B|A} \right) = \frac{{100}}{{120}} = \frac{{10}}{{12}}\).

Khi đó \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{3}{{25}}.\frac{{10}}{{12}}}}{{\frac{{13}}{{100}}}} \approx 77\% \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP