Câu hỏi:

26/10/2025 110 Lưu

Kết quả khảo sát những bệnh nhân bị đột quỵ của một bệnh viện cho thấy tỉ lệ bệnh nhân hồi phục sau đột quỵ là 35%; tỉ lệ bệnh nhân được điều trị trong 6 giờ đầu sau khi đột quỵ là 40%; tỉ lệ bệnh nhân được điều trị trong 6 giờ đầu sau khi đột quỵ và hồi phục là 30%. Chọn ngẫu nhiên một bệnh nhân bị đột quỵ được điều trị tại bệnh viện. Khi đó:

a) Xác suất người đó được điều trị trong 6 giờ đầu sau khi đột quỵ, biết rằng người đó hồi phục là 0,6.

b) Xác suất người đó không hồi phục, biết rằng người đó được điều trị trong 6 giờ đầu sau khi đột quỵ là 0,4.

c) Xác suất người đó hồi phục, biết rằng người đó không được điều trị trong 6 giờ đầu sau khi đột quỵ là \(\frac{1}{{25}}\).

d) Việc đưa bệnh nhân vào bệnh viện để điều trị trong 6 giờ đầu sau khi đột quỵ làm tăng tỉ lệ hồi phục lên \(\frac{{10}}{3}\) lần.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi A là biến cố “Bệnh nhân đó hồi phục sau đột quỵ”;

B là biến cố “Bệnh nhân đó được điều trị trong 6 giờ đầu”.

Theo đề ta có \(P\left( A \right) = 0,35;P\left( B \right) = 0,4;P\left( {AB} \right) = 0,3\).

a) \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,3}}{{0,35}} \approx 0,86\).

b) \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A B} \right)}}{{P\left( B \right)}} = \frac{{P\left( B \right) - P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,4 - 0,3}}{{0,4}} = \frac{1}{4}\).

c) \(P\left( {A|\overline B } \right) = \frac{{P\left( {A\overline B } \right)}}{{P\left( {\overline B } \right)}} = \frac{{P\left( A \right) - P\left( {AB} \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,35 - 0,3}}{{0,6}} = \frac{1}{{12}}\).

d) Có \(\frac{{P\left( {A|B} \right)}}{{P\left( {A|\overline B } \right)}} = \frac{{P\left( {AB} \right)}}{{P\left( B \right).P\left( {A|\overline B } \right)}} = \frac{{0,3}}{{0,4.\frac{1}{{12}}}} = 9\).

Đáp án: a) Sai;   b) Sai;   c) Sai;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 10%.                       
B. 77%.                       
C. 90%.                                   
D. 50%.

Lời giải

Chọn B

Gọi A là biến cố “Người đó thực sự bị mắc bệnh”; B là biến cố “người đó có kết quả xét nghiệm dương tính”.

Theo đề ta có \(P\left( A \right) = \frac{{120}}{{1000}} = \frac{3}{{25}}\); \(P\left( B \right) = \frac{{130}}{{1000}} = \frac{{13}}{{100}}\); \(P\left( {B|A} \right) = \frac{{100}}{{120}} = \frac{{10}}{{12}}\).

Khi đó \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{3}{{25}}.\frac{{10}}{{12}}}}{{\frac{{13}}{{100}}}} \approx 77\% \).

Lời giải

Chọn D

Gọi A là biến cố “Chiếc bút lấy từ hộp I bỏ sang hộp II là màu xanh”;

B là biến cố “Chiếc bút lấy ra từ hộp II có màu xanh”.

Theo đề ta có \(P\left( A \right) = \frac{{15}}{{20}} = \frac{3}{4} \Rightarrow P\left( {\overline A } \right) = \frac{1}{4}\); \(P\left( {B|A} \right) = \frac{6}{{11}};P\left( {B|\overline A } \right) = \frac{5}{{11}}\).

Khi đó \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = \frac{3}{4}.\frac{6}{{11}} + \frac{1}{4}.\frac{5}{{11}} = \frac{{23}}{{44}}\).